CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/EVEN/SEM/ MTMDSE-601T (A/B/C)/038

TDC (CBCS) Even Semester Exam., 2023

MATHEMATICS

(6th Semester)

Course No.: MTMDSE-601T

The figures in the margin indicate full marks for the questions

Candidates have to answer from either Option—A or Option—B or Option—C

OPTION—A

Course No.: MTMDSE-601T (A)

(Complex Analysis)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

SECTION—A

Answer any *twenty* of the following questions: 1×20=20

- **1.** Express $\sqrt{3} i$ in polar form.
- 2. Represent 1+i in Argand diagram.

(Turn Over)

(3)

- 3. If z is a complex number such that $z + \overline{z} = 0$, then what is the real part of z?
- **4.** Write the triangle inequality for two complex numbers z and w.
- **5.** Express the following in the form a+ib:

$$\frac{1+i}{1-i}$$

6. Let $f: \mathbb{C} \to \mathbb{C}$ where \mathbb{C} is the set of complex numbers defined by

$$f(z) = z\overline{z} \quad \forall z \in \mathbb{C}$$

What is the range of f?

- **7.** Write Cauchy-Riemann equations in polar form.
- 8. Evaluate:

$$Lt_{z\to i}\left(\frac{z-i}{z^2+1}\right)$$

- **9.** Define continuity of a function at a point in C.
- **10.** Give example of a function that is continuous at every point in \mathbb{C} .

11. Evaluate:

$$\int_{1}^{i} z^{3} dz$$

- 12. If C is any simple closed curve, then what is the value of $\oint z dz$?
- 13. Give example of a simply connected region.
- 14. Give example of a multiply connected region.
- 15. If f(z) = u(x, y) + iv(x, y), then write the relation between the complex and real line integrals.
- 16. Write Cauchy's integral formula.
- 17. Show that amp $z = -amp \overline{z}$.
- 18. Evaluate $\oint_C \frac{dz}{z-1}$, where C is the circle |z| = 2.
- 19. State Cauchy's inequality.
- 20. Evaluate $\oint_C \frac{zdz}{(z-2)^2}$, where C is the circle |z|=3.

(4)

- 21. What is an entire function?
- 22. What do you mean by Jordan arc?
- 23. Write the Taylor series for e^z .
- 24. State the fundamental theorem of algebra.
- **25.** Justify if $f(z) = \sin z$, $z \in \mathbb{C}$ is bounded.

Answer any five of the following questions: 2×5=10

26. For any two complex numbers z_1 and z_2 , show that

$$\overline{z_1 z_2} = \overline{z}_1 \cdot \overline{z}_2$$

27. Find the locus of the point z satisfying

$$|z-1|=2|z+1|$$

28. Evaluate:

Lt
$$\sum_{z \to i} \frac{z^2 - z - iz + i}{z^2 + 1}$$

29. Show that u = 2x(1-y) is harmonic.

30. Evaluate:

$$\int_{3i}^{1-i} 4z dz$$

- 31. Evaluate $\int_C (12z^2 4iz) dz$ along the straight line joining (1, 1) and (2, 1).
- 32. Evaluate

$$\oint_C \frac{e^{2z}}{(z+1)^2} dz$$

where C is the circle |z|=2

33. Let C be a simple closed curve enclosing the point z=a. What is the value of

$$\oint_C \frac{f(z)}{(z-a)^5} dz?$$

34. Find the zeroes of the polynomial

$$z^3 - 3z^2 + z - 3$$

35. State Taylor's theorem. How can you obtain Maclaurin's series from Taylor's series?

SECTION-C

Answer any five of the following questions: 8×5=40

- 36. Describe the locus represented by |z| + |z-4| = 6and obtain the Cartesian equation.
 - Find the condition on

$$\frac{(z_3-z_1)(z_4-z_2)}{(z_3-z_2)(z_4-z_1)}$$

so that the points z_1, z_2, z_3, z_4 are concyclic.

Describe the geometrical interpretation **37.** (a) of

$$arg\left(\frac{z-\alpha}{z-\beta}\right)$$
 4

4

- Find the expression for the area of a triangle with vertices z_1 , z_2 , z_3 . 4
- Derive a necessary condition for a 38. (a) function to be analytic in a region $D \subset \mathbb{C}$.
 - If $u = e^{-x} (x \sin y y \cos y)$, then find vsuch that f(z) = u + iv is analytic.

Evaluate: 39. (a)

Lt
$$z \to i \frac{z^2 - 2iz - 1}{z^4 + 2z^2 + 1}$$

(b) Discuss the differentiability of the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$f(z) = |z|^2 \ \forall \ z \in \mathbb{C}$$

at all points in C.

Evaluate

$$\int_C f(z) dz$$

where $f(z) = z^3$ and C is the curve $\gamma(t)=t^2+it \text{ for } t\in[0,\,\pi].$

- (b) Justify whether $\int Re(z) dz$ is independent of the path joining 0 and 1+i. 4
- 41. State and prove Cauchy-Goursat theorem for the case of a triangle. 2+6=8
- State and prove Morera's theorem. 5
 - Evaluate

$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$

where C is the circle |z| = 3.

(Turn Over)

3

3

5

(Continued)

J23/814

J23/**814**

CENTRAL LIBRARY N.C.COLLEGE (8)

43. (a) If f is analytic inside and on the circle C with radius r and centre z = a, and $|f(z)| \le M$ on C, then show that

$$|f^n(a)| \le \frac{M \cdot n!}{r^n}, \quad n = 0, 1, 2, \dots$$

(b) Evaluate

$$\oint_C \frac{e^{3z}}{(z-i\pi)^2} dz$$

where C is the ellipse |z-2|+|z+2|=6.

- 44. (a) State and prove Liouville's theorem. 5
 - (b) Derive the Taylor series for

$$f(z) = \ln (1+z)$$
about $z = 0$.

- **45.** (a) Use the fundamental theorem of algebra to show that every polynomial of degree n has exactly n zeros.
 - (b) Expand $f(z) = \frac{1}{1+z}$ about z=1 and determine the region of convergence.

(9)

OPTION-B

Course No.: MTMDSE-601T (B)

(Linear Programming)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

SECTION-A

Answer any twenty of the following questions:

1×20=20

- 1. What is unbounded solution?
- 2. Find the extreme points of the following set:

$$A = \{(x_1, x_2) | |x_1| \le 1, |x_2| \le 1\}$$

3. Is $x_1 = 1$, $x_2 = \frac{1}{2}$, $x_3 = x_4 = x_5 = 0$ a basic solution of the following system?

$$x_1 + 2x_2 + x_3 + x_4 = 2$$

$$x_1 + 2x_2 + \frac{1}{2}x_3 + x_5 = 2$$

4. Express $\left(0, \frac{3}{2}\right)$, if possible, as a convex combination of (1, 1) and (-1, 2).

3

(10)

- 5. When are two hyperplanes parallel?
- **6.** Under what conditions an LPP may have an alternative optimal solution?
- 7. What is degeneracy in LPP?
- **8.** What is the significance of taking a large positive value of M in Big-M method?
- **9.** In the two-phase method, when can we say that the LPP has no feasible solution?
- 10. State the fundamental theorem of linear programming model.
- 11. What is the advantage of dual simplex algorithm?
- 12. State the weak duality theorem.
- **13.** What do you mean by a balanced transportation problem?
- 14. What are the disadvantages of North-West corner rule?

- **15.** Why do we use Vogel's approximation method?
- 16. What is an unbalanced assignment problem?
- 17. Why can degeneracy arise in the solution of a transportation problem?
- 18. What is the indication that a transportation problem has multiple optimal solutions?
- 19. How would you explain the interpretation of the optimal solution of an unbounded TP?
- 20. How would you apply North-West corner rule to find initial feasible solution if the first-source, first-destination route is prohibited?
- 21. What do you mean by a 'finite game'?
- **22.** What do you mean by pure and mixed strategy?
- 23. What is maximin principle?
- 24. What is saddle point?
- 25. Give one example of a non-zero-sum game.

(12)

SECTION-B

Answer any five of the following questions: $2\times5=10$

26. A hyperplane is given by the equation

$$3x_1 + 3x_2 + 4x_3 + 7x_4 = 8$$

Find in which half spaces the points (-6, 1, 7, 2) and (1, 2, -4, 1) lie.

27. Find all the basic solutions of the following system:

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + x_2 + 5x_3 = 5$$

- 28. Describe phase I of two-phase method for LPP.
- 29. Construct the initial simplex table for the following LPP:

Maximize
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to
$$x_1 + 2x_2 + 3x_3 = 15$$

$$2x_1 + x_2 + 5x_3 = 20$$

$$x_1 + 2x_2 + x_3 + x_4 = 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

(13)

- 30. Using one example, show that the dual of the dual of a given primal is the primal itself.
- 31. Determine an initial basic feasible solution to the following transportation problem using the North-West corner rule:

			Destii	natior	ı	
		D_1	D_2	D_3	D_4	Availability 14
	$s_{\mathbf{l}}$	6	4	1	5	14
Source	S_2	8	9	2	7	16
	S_3	4	3	6	2	5
Requirement		6	10	15	4	

- 32. Write a note on assignment problem.
- 33. Give the pictorial (schematic) presentation of MODI method.
- **34.** Find the saddle point of the following pay-off matrix:

$$\begin{array}{cccc}
 & B \\
 & I & II & III \\
 & A & II \begin{bmatrix} 6 & 8 & 6 \\ 4 & 12 & 2 \end{bmatrix}
\end{array}$$

(15)

(14)

35. Construct the corresponding LPP for the following pay-off matrix:

SECTION-C

Answer any five of the following questions: 8×5=40

- 36. (a) Prove that the intersection of two convex sets is also a convex set.
 - (b) Solve graphically: 5

 Maximize $Z = 6x_1 + 11x_2$ subject to

$$2x_1 + x_2 \le 104$$
$$x_1 + 2x_2 \le 76$$
$$x_1 \ge 0, \ x_2 \ge 0$$

- 37. (a) A firm manufactures two products A and B on which the profits earned per unit are ₹3 and ₹4 respectively. Each product is processed on two machines M₁ and M₂. Product A requires 1 minute of processing on M₁ and 1 minute of processing on M₂. M₁ is not available for more than 7 hours 30 minutes while M₂ is available for 10 hours during any working day. Find the number of units of products A and B need to be manufactured to get maximum profit. Formulate the LP model.
 - (b) Write the following LPP in standard form:

Maximize
$$Z = 3x_1 + 2x_2$$

subject to

$$-2x_1 + 3x_2 \le 9$$

$$x_1 - 5x_2 \ge -20$$

$$x_1, x_2 \ge 0$$

38. Solve the following by two-phase method: 8

Minimize
$$Z = x_1 + x_2$$

subject to
 $2x_1 + x_2 \ge 4$
 $x_1 + 7x_2 \ge 7$
 $x_1, x_2 \ge 0$

5

3

(16)

39. Solve the following LPP using simplex method:

Maximize
$$Z = 3x_1 + 5x_2 + 4x_3$$

subject to
 $2x_1 + 3x_2 \le 8$
 $2x_2 + 5x_3 \le 10$
 $3x_1 + 2x_2 + 4x_3 \le 15$

and $x_1, x_2, x_3 \ge 0$.

40. Using dual, solve the following LPP: 8

Maximize
$$Z_p = 3x_1 - 2x_2$$

subject to
 $x_1 \le 4$
 $x_2 \le 6$
 $x_1 + x_2 \le 5$
 $-x_2 \le -1$

and $x_1, x_2 \ge 0$.

41. Determine an initial basic feasible solution to the following transportation problem using Vogel's approximation method:

		Destination				
		$D_{\mathbf{l}}$	D_2	D_3	D_4	Availability
Source	s_{i}	1	2	1	4	20
	S_2	3	3	2	1	40
	S_3	4	2	5	9	20
	S_4	5	3	6	10	20
Requirement		20	40	30	10	

42. Solve the following balanced transportation problem:

		De	estinati		
		D_1	D_2	D_3	Availability
Source	$s_{\mathbf{l}}$	8	7	3	60
	S_2	3	8	9	70
	S_3	11	3	5	80
Requirement		50	80	80	

43. Solve the following minimal assignment problem:

Man → Job↓	1	2	3	4
I	12	30	21	15
I I	18	33	9	31
Ш	44	25	24	21
IV	23	30	28	14

44. Solve the game graphically whose pay-off matrix is

(Turn Over)

8

8

8

CENTRAL LIBRARY N.C.COLLEGE (18)

45. Solve the game using any appropriate method whose pay-off matrix is given by

8

OPTION-C

Course No.: MTMDSE-601T (C)

(Object-oriented Programming in C++)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

SECTION-A

Answer any fifteen of the following questions:

1×15=15

- 1. What is object-oriented programming?
- 2. What is an object in C++?
- 3. Define member function.
- 4. Where does the name C++ come from?

J23/**814** (Continued)

- **5.** How do you access the memory address of a variable?
- 6. What is wrong with the following code?char c = 'w';char p = c;
- 7. What name must a constructor have?
- 8. How many destructors can a class have?
- 9. Write a single C++ statement that prints "TOO MANY" if the variable count exceeds 100.
- 10. What is dangling pointer?
- 11. What is the difference between a class and a struct in C++?
- 12. When does a function need an include directive?
- 13. How many different types can the elements of an array have?

(Turn Over)

(20)

- 14. What happens if an array's initializer has more values than the size of the array?
- 15. What do you mean by operator overloading in C++?
- 16. What is virtual member function?
- 17. What is derived class in C++?
- 18. What is the function of scope resolution operator in C++?
- 19. Why cannot ** be overloaded as an exponential operator in C++?
- 20. What is an abstract base class?

SECTION—B

Answer any five of the following questions: 2×5=10

- 21. Define nested class. What are the restrictions on local class?
- 22. Write a short note on inheritance.

- 23. What are the disadvantages of OOP?
- 24. What is virtual function? Write the rules for defining a virtual function.
- 25. Explain the difference between copy constructor and assignment operator.
- 26. What is polymorphism?
- 27. What are the differences between passing a parameter by a value and by a reference?
- 28. What is the difference between 'static binding' and 'dynamic binding'?
- 29. What is the difference between the effects of the following two lines?

Ratio
$$y = x$$
;
Ratio; $y = x$;

30. What are the main differences between an array and a C++ vector?

J23/814

(Continued)

(22)

SECTION—C

Answer any five of the following questions: 5×5=25

- **31.** Write a function that uses pointers to copy an array of double.
- 32. Write a program in C++ to overload plus (+) operator to carry out minus (-) operation using 4 components and hence find the value of

$$(4, 3, 8, 10) + (2, 8, 4, 12)$$

33. Write a program using OOP to find the roots of the following quadratic equation in x:

$$ax^2 + bx + c = 0$$
. $a \ne 0$

- 34. What is memory leak? How can virtual destructors plug a memory leak?
- **35.** What is compile time polymorphism and how is it different from runtime polymorphism?
- **36.** What are the various types of constructors in C++? Explain with examples.
- 37. Explain various data types used in C++.

- **38.** Explain public and private access modifiers for C++ classes.
- **39.** Explain pointer to derived class with example.
- **40.** List the benefits of object-oriented programming.

 $\star\star\star$

(Continued)