CENTRAL LIBRARY N.C.COLLEGE ## 2023/TDC(CBCS)/EVEN/SEM/ MTMHCC-201T/028 ## TDC (CBCS) Even Semester Exam., 2023 **MATHEMATICS** (Honours) (2nd Semester) Course No.: MTMHCC-201T (Real Analysis) Full Marks: 70 Pass Marks: 28 Time: 3 hours The figures in the margin indicate full marks for the questions #### SECTION-A Answer any ten questions: $2 \times 10 = 20$ - 1. Show that \mathbb{R} is not bounded above in \mathbb{R} . - 2. Show that $$\bigcap_{n=1}^{\infty} [n, \infty) = \emptyset$$ **3.** Assuming density of \mathbb{Q} in \mathbb{R} , show that $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} . (Turn Over) J23/534 - 4. Show that 5 is not a limit point of \mathbb{N} . - 5. Show that [0, 1) is not open in \mathbb{R} . - **6.** Does the set $(-5,0) \cup \mathbb{N}$ have a limit point in \mathbb{R} ? Justify. - 7. Show that the sequence (x_n) , where $x_n = (-1)^{n+1} \ \forall \ n \in \mathbb{N}$ cannot converge to 1. - **8.** Find a sequence of irrationals (x_n) such that $x_n \to 0$. - 9. Let the sequence (x_n) converges to $x_0 \in \mathbb{R}$. Find an upper bound of the set $\{x_n:n\in\mathbb{N}\}$ 10. Prove or disprove: $$\left(1,\frac{1}{3},\frac{1}{5},\frac{1}{9},\frac{1}{7},\cdots\right)$$ is a subsequence of the sequence $\left(\frac{1}{n}\right)$. 11. Prove or disprove: Every Cauchy sequence in \mathbb{R} is monotone. (Continued) 12. Write down four convergent subsequences of the sequence (x_n) , where $$x_n = (-1)^n \quad \forall \ n \in \mathbb{N}$$ 13. Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be convergent series such that $x_n < y_n \ \forall \ n \in \mathbb{N}$. Show that $$\sum_{n=1}^{\infty} x_n < \sum_{n=1}^{\infty} y_n$$ - 14. Prove or disprove : If the series $\sum_{n=1}^{\infty} x_n$ converges, then $x_n \to 0$. - 15. Show that the series $\sum_{n=1}^{\infty} \frac{1}{|n|}$ converges. ### SECTION-B Answer any five questions: 10×5=50 5 - **16.** (a) Show that \mathbb{Z} is a countable set. - (b) Let A and B be non-empty bounded below subsets of \mathbb{R} . Show that $$g.l.b.(A + B) = g.l.b.(A) + g.l.b.(B)$$ 5 J23**/534** (Turn Over) - 17. (a) Show that the following are equivalent: 5 (i) \mathbb{N} is unbounded above in \mathbb{R} (ii) $\forall x, y \in \mathbb{R}$ with x > 0, $\exists n \in \mathbb{N}$ such that nx > y - (b) Assuming order-completeness of \mathbb{R} , show that every non-empty bounded below subset of \mathbb{R} has an infimum. 5 Show that $A \subset \mathbb{R}$ is open in \mathbb{R} iff $\mathbb{R} \setminus A$ - contains all its limit points. 5 (b) Let A be a non-empty bounded above open subset of \mathbb{R} . Show that 1.u.b.(A) \notin A 5 - 19. (a) Show that $\mathbb Q$ is not closed in $\mathbb R$. Find $\overline{\mathbb Q}$ in $\mathbb R$. 3+2=5 - (b) Find the derived set of $\mathbb{R}\setminus\{0\}$ in \mathbb{R} . Is $\mathbb{R}\setminus\{0\}$ closed? Justify. Is $\mathbb{R}\setminus\{0\}$ open? Justify. (No credit will be given without proper justification) 2+1+2=5 - **20.** (a) Let (x_n) converges to $x_0 \in \mathbb{R}$. Show that $\left\{ n \in \mathbb{N} : |x_n x_0| \ge \frac{1}{2} \right\}$ is a finite set. (b) Prove or disprove: If (x_n) and (y_n) both do not converge, then $(x_n y_n)$ and $(x_n + y_n)$ both cannot converge. - 21. (a) Let (x_n) be a monotone decreasing bounded sequence. Show that (x_n) converges. - (b) Let (x_n) be a bounded sequence and (y_n) converges to 0. Show that (x_ny_n) converges to 0. Does (x_ny_n) converge if (x_n) is bounded and $y_n \to 1$? 3+2=5 - **22.** (a) Prove or disprove: There exists a bounded sequence (x_n) in \mathbb{R} such that given any subsequence (x_{n_k}) of (x_n) and given any $x_0 \in \mathbb{R}$, (x_{n_k}) does not converge to x_0 . - (b) Show that the sequence (x_n) , where $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \quad \forall \ n \ge 3$ is not a Cauchy sequence in \mathbb{R} . - 23. (a) Let (y_n) and (z_n) be subsequences of (x_n) such that $y_n \to y_0$ and $z_n \to z_0$ in \mathbb{R} . If $y_0 \neq z_0$, show that (x_n) is not convergent. - Let (x_n) be a Cauchy sequence in \mathbb{R} such that $x_n \in \mathbb{N} \ \forall n \in \mathbb{N}$. Show that there exists $m \in \mathbb{N}$ such that $x_n = x_k \ \forall n, k \ge m$ 18. 5 5 5 5 5 5 ## CENTRAL LIBRARY N.C.COLLEGE (6) - 24. (a) Show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1. - (b) If $\sum_{n=1}^{\infty} x_n$ with $x_n > 0 \ \forall n \in \mathbb{N}$, is convergent, then is $\sum_{n=1}^{\infty} x_n^2$ always convergent? Justify your answer. 5 - **25.** (a) Let $\sum_{n=1}^{\infty} x_n$ be a convergent series such that $\sum_{n=1}^{\infty} x_n y_n$ is convergent. Is $\sum_{n=1}^{\infty} y_n$ necessarily convergent? Justify. Is $\sum_{n=1}^{\infty} y_n$ necessarily divergent? Justify. 4 - (b) Let (x_n) be a sequence in \mathbb{R} such that $$\sum_{n=1}^{\infty} |x_n|$$ converges. Show that $\sum_{n=1}^{\infty} x_n$ is convergent. Does convergence of $\sum_{n=1}^{\infty} x_n$ necessarily imply the convergence of $$\sum_{n=1}^{\infty} |x_n|$$? Justify. 3+3=6 *** 2023/TDC(CBCS)/EVEN/SEM/ MTMHCC-201T/028