CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/EVEN/SEM/ MTMHCC-201T/028

TDC (CBCS) Even Semester Exam., 2023

MATHEMATICS

(Honours)

(2nd Semester)

Course No.: MTMHCC-201T

(Real Analysis)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten questions:

 $2 \times 10 = 20$

- 1. Show that \mathbb{R} is not bounded above in \mathbb{R} .
- 2. Show that

$$\bigcap_{n=1}^{\infty} [n, \infty) = \emptyset$$

3. Assuming density of \mathbb{Q} in \mathbb{R} , show that $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

(Turn Over)

J23/534

- 4. Show that 5 is not a limit point of \mathbb{N} .
- 5. Show that [0, 1) is not open in \mathbb{R} .
- **6.** Does the set $(-5,0) \cup \mathbb{N}$ have a limit point in \mathbb{R} ? Justify.
- 7. Show that the sequence (x_n) , where $x_n = (-1)^{n+1} \ \forall \ n \in \mathbb{N}$

cannot converge to 1.

- **8.** Find a sequence of irrationals (x_n) such that $x_n \to 0$.
- 9. Let the sequence (x_n) converges to $x_0 \in \mathbb{R}$. Find an upper bound of the set

 $\{x_n:n\in\mathbb{N}\}$

10. Prove or disprove:

$$\left(1,\frac{1}{3},\frac{1}{5},\frac{1}{9},\frac{1}{7},\cdots\right)$$

is a subsequence of the sequence $\left(\frac{1}{n}\right)$.

11. Prove or disprove: Every Cauchy sequence in \mathbb{R} is monotone.

(Continued)

12. Write down four convergent subsequences of the sequence (x_n) , where

$$x_n = (-1)^n \quad \forall \ n \in \mathbb{N}$$

13. Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be convergent series such that $x_n < y_n \ \forall \ n \in \mathbb{N}$. Show that

$$\sum_{n=1}^{\infty} x_n < \sum_{n=1}^{\infty} y_n$$

- 14. Prove or disprove : If the series $\sum_{n=1}^{\infty} x_n$ converges, then $x_n \to 0$.
- 15. Show that the series $\sum_{n=1}^{\infty} \frac{1}{|n|}$ converges.

SECTION-B

Answer any five questions:

10×5=50

5

- **16.** (a) Show that \mathbb{Z} is a countable set.
 - (b) Let A and B be non-empty bounded below subsets of \mathbb{R} . Show that

$$g.l.b.(A + B) = g.l.b.(A) + g.l.b.(B)$$
 5

J23**/534**

(Turn Over)

- 17. (a) Show that the following are equivalent: 5
 (i) \mathbb{N} is unbounded above in \mathbb{R} (ii) $\forall x, y \in \mathbb{R}$ with x > 0, $\exists n \in \mathbb{N}$ such that nx > y
 - (b) Assuming order-completeness of \mathbb{R} , show that every non-empty bounded below subset of \mathbb{R} has an infimum. 5

Show that $A \subset \mathbb{R}$ is open in \mathbb{R} iff $\mathbb{R} \setminus A$

- contains all its limit points. 5

 (b) Let A be a non-empty bounded above open subset of \mathbb{R} . Show that

 1.u.b.(A) \notin A 5
- 19. (a) Show that $\mathbb Q$ is not closed in $\mathbb R$. Find $\overline{\mathbb Q}$ in $\mathbb R$. 3+2=5
 - (b) Find the derived set of $\mathbb{R}\setminus\{0\}$ in \mathbb{R} . Is $\mathbb{R}\setminus\{0\}$ closed? Justify. Is $\mathbb{R}\setminus\{0\}$ open? Justify. (No credit will be given without proper justification) 2+1+2=5
- **20.** (a) Let (x_n) converges to $x_0 \in \mathbb{R}$. Show that $\left\{ n \in \mathbb{N} : |x_n x_0| \ge \frac{1}{2} \right\}$

is a finite set.

(b) Prove or disprove: If (x_n) and (y_n) both do not converge, then $(x_n y_n)$ and $(x_n + y_n)$ both cannot converge.

- 21. (a) Let (x_n) be a monotone decreasing bounded sequence. Show that (x_n) converges.
 - (b) Let (x_n) be a bounded sequence and (y_n) converges to 0. Show that (x_ny_n) converges to 0. Does (x_ny_n) converge if (x_n) is bounded and $y_n \to 1$? 3+2=5
- **22.** (a) Prove or disprove: There exists a bounded sequence (x_n) in \mathbb{R} such that given any subsequence (x_{n_k}) of (x_n) and given any $x_0 \in \mathbb{R}$, (x_{n_k}) does not converge to x_0 .
 - (b) Show that the sequence (x_n) , where $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \quad \forall \ n \ge 3$ is not a Cauchy sequence in \mathbb{R} .
- 23. (a) Let (y_n) and (z_n) be subsequences of (x_n) such that $y_n \to y_0$ and $z_n \to z_0$ in \mathbb{R} . If $y_0 \neq z_0$, show that (x_n) is not convergent.
 - Let (x_n) be a Cauchy sequence in \mathbb{R} such that $x_n \in \mathbb{N} \ \forall n \in \mathbb{N}$. Show that there exists $m \in \mathbb{N}$ such that $x_n = x_k \ \forall n, k \ge m$

18.

5

5

5

5

5

5

CENTRAL LIBRARY N.C.COLLEGE

(6)

- 24. (a) Show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1.
 - (b) If $\sum_{n=1}^{\infty} x_n$ with $x_n > 0 \ \forall n \in \mathbb{N}$, is convergent, then is $\sum_{n=1}^{\infty} x_n^2$ always convergent? Justify your answer.

5

- **25.** (a) Let $\sum_{n=1}^{\infty} x_n$ be a convergent series such that $\sum_{n=1}^{\infty} x_n y_n$ is convergent. Is $\sum_{n=1}^{\infty} y_n$ necessarily convergent? Justify. Is $\sum_{n=1}^{\infty} y_n$ necessarily divergent? Justify. 4
 - (b) Let (x_n) be a sequence in \mathbb{R} such that

$$\sum_{n=1}^{\infty} |x_n|$$

converges. Show that $\sum_{n=1}^{\infty} x_n$ is convergent. Does convergence of $\sum_{n=1}^{\infty} x_n$ necessarily imply the convergence

of
$$\sum_{n=1}^{\infty} |x_n|$$
? Justify. 3+3=6

2023/TDC(CBCS)/EVEN/SEM/ MTMHCC-201T/028