CENTRAL LIBRARY N.C.COLLEGE

2023/TDC (CBCS)/EVEN/SEM/ CHMHCC-602T/340

TDC (CBCS) Even Semester Exam., 2023

CHEMISTRY

(Honours)

(6th Semester)

Course No.: CHMHCC-602T

(Organic Chemistry-V)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten questions:

 $2 \times 10 = 20$

- Define chromophore and auxochrome with suitable examples.
- 2. How can you distinguish the following pairs by UV-visible spectroscopy?

and /

J23/819

(Turn Over)

(2)

3. Which of the following compounds, I and II, is expected to show a lower C=O stretching frequency? Justify your answer:

2

$$I$$
 OCH₃ and II

- 4. What do you understand by equivalent and non-equivalent protons? with Explain suitable examples.
- 5. How many NMR signals are expected in the ½×4=2 following compounds?
 - (a) Acetone
 - (b) CH₃CH₂CH₃
 - (c) $CH_3-CH=CH_2$
- 6. Explain why the aromatic protons are more deshielded than the ethylenic protons although both the types of protons are attached to sp^2 hybridized carbons.
- 7. Write any two isomeric forms of glucose and designate then in D- and L-configuration.

- 8. What is polysaccharide? Give two examples.
- 9. Define epimer with suitable examples.
- 10. What are the characteristics of good dye?
- 11. What are mordant dyes? Give one example.
- 12. Discuss briefly the relationship between colour and constitution in a good dye.
- 13. What are biopolymers? Give example.
- 14. What is ring opening polymerization? Give example.
- 15. What is addition polymerization? Give example.

SECTION—B

Answer any five questions:

J23/819

6×5=30

In ethyl acetoacetate, a weak signal $\lambda_{\text{max}} = 275 \,\text{nm}$, $\varepsilon_{\text{max}} 20$ and a strong signal $\lambda_{max} = 245 \text{ nm}, \ \epsilon_{max} 18000 \text{ is}$ observed when irradiated in UV-visible light. Justify this observation.

3

(4)

(b) In an analytical report of the following reaction, two prominent peaks for carbonyl stretching frequency $v_{C=0}$ are observed at 1700 cm⁻¹ and 1677 cm⁻¹. Designate these peaks for compounds A and B:

$$\begin{array}{c|c}
CH_3 & Reduction \\
\hline
A & Reduction
\end{array}$$

$$\begin{array}{c|c}
CH_3 & Reduction
\end{array}$$

$$\begin{array}{c|c}
CH_3 & Reduction
\end{array}$$

What conclusion you can draw from the above data in terms of completion of reaction? 1+2=3

17. (a) A compound can be either I or II of the following:

The compound exhibits λ_{max} = 225 nm. Establish the structure of the compound.

3

(Continued)

(b) Match the following $v_{C=O}$ stretching frequencies with respective compounds:

3

3

compounds:	
Compound	$v_{c=0}$
(i) 1	1640 cm ⁻¹
(ii)	1828 cm ⁻¹
(iii)	1780 cm ⁻¹
(iv) $\begin{array}{c} 0 & 0 \\ \parallel & \parallel \\ \text{CH}_3 & \text{CH}_2 & \text{CH}_3 \end{array}$	1717 cm ⁻¹
(v) \bigcirc CH \rightarrow CH $_3$	1700 cm ⁻¹
(vi) CH ₃ C OH (dimeric)	1674 cm ⁻¹

- 18. (a) What is chemical shift? How can you distinguish toluene and benzoic acid by ¹H-NMR spectroscopy taking chemical shift and splitting pattern in consideration? 1+2=3
 - (b) Draw a typical ¹H-NMR spectrum of ethanol explaining the chemical shift and splitting pattern of all the hydrogen involved.

J23/819 (Turn Over)

J23**/819**

- 19. (a) Why is TMS used as a reference compound in NMR spectroscopy? How does it help in chemical shift measurement? 2+1=3
 - (b) Comment on the number of signals and their splitting, if any, in the NMR spectrum of the following compounds:

11/2+11/2=3

(i)
$$O_2N$$
— CH_3

- (ii) $CH_3 O CH_2CH_3$
- **20.** (a) What happens when (show only reaction)—
 - (i) glucose is treated with phenyl hydrazine;
 - (ii) glucose is treated with hydroxyl amine;
 - (iii) fructose is treated with sodium borohydride? 1×3=3
 - (b) Prove that fructose unit in sucrose molecule is a furanose ring.
- **21.** (a) Convert the following (write only reactions): $2\times2=4$
 - (i) D-glucose to D-arabinose
 - (ii) D-fructose to D-glucose

(Continued)

- (b) What is mutarotation? Explain with suitable example.
- 22. Write one method of synthesis of each of-
 - (a) malachite green;
 - (b) phenolphthalein. 3+3=6
- 23. (a) Discuss briefly the Witt's theory of dyes. 3
 - (b) Write one synthesis of methyl orange. 3
- 24. (a) What are Ziegler-Natta catalysts? Write the advantages of using Ziegler-Natta catalyst in polymer industry. 2+2=4
 - (b) Write a note on 'phenol-formaldehyde resin'.
- **25.** (a) What are Buna-S rubbers? Explain the vulcanization of rubber. 2+2=4
 - (b) Write the expression for number average molecular weight and weight average molecular weight for polymers.

1+1=2

2

* * *

J23-300/819

2023/TDC (CBCS)/EVEN/SEM/ CHMHCC-602T/340