2023/TDC(CBCS)/EVEN/SEM/ CHMDSC/GE-401T/337

TDC (CBCS) Even Semester Exam., 2023

CHEMISTRY

(4th Semester)

Course No.: CHMDSC/GE-401T

(Transition Metals, Coordination Chemistry, States of Matter and Chemical Kinetics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any fifteen of the following questions:

 $1 \times 15 = 15$

- 1. Write the general electronic configuration of the first transition series.
- 2. Name the only synthetic radioactive element in lanthanoids.
- 3. The +3 oxidation states of lanthanum (Z = 57) and gadolinium (Z = 64) are especially stable. Why?

J23/673

(Turn Over)

(3)

- **4.** Among Co²⁺ and Ni²⁺, who has lower magnetic moment?
- **5.** Give an example of unsymmetrical bidentate ligand.
- 6. Write two drawbacks of valence bond theory.
- 7. State Jahn-Teller theorem.
- 8. Write two postulates of crystal field theory.
- 9. What is Boyle temperature?
- **10.** What is the significance of compressibility factor?
- 11. Write the kinetic gas equation and explain the terms involved.
- 12. Write the significance of van der Waals' constant, a.
- 13. Define liquid crystal and give example.
- **14.** What is the effect of temperature on surface tension?
- 15. What is vacancy defect?

- 16. Write Bragg's law.
- 17. Give an example of zero-order reaction.
- 18. What is threshold energy?
- **19.** What is the unit of rate constant for a second-order reaction?
- **20.** What do you mean by instantaneous rate of reaction?

SECTION-B

Answer any five of the following questions:

 $2 \times 5 = 10$

- 21. Write various features of a Latimer diagram.
- **22.** Explain why transition elements act as catalyst.
- **23.** Explain ligand isomerism with suitable example.
- **24.** Draw different geometrical isomers of [PtClBrPy(NH₃)].
- 25. Define collision number and mean free path.

(4)

26. Explain the effect of temperature and pressure on coefficient of viscosity of gases.

- **27.** Write the rules for identification of lattice plane.
- 28. Explain F-centre with an example.
- **29.** Show that the half-life period of a zero-order reaction is directly proportional to initial concentration.
- **30.** Explain various factors affecting the rate of a reaction.

SECTION-C

Answer any five of the following questions:

5×5=25

2

- **31.** (a) Write the difference between lanthanoids and actinoids.
 - (b) Draw Latimer diagram for the following reduction half-reaction and calculate the value of E° for reduction of Cu^{2+} to Cu: 1+2=3

$$\operatorname{Cu}^{2+} + e^{\circ} \longrightarrow \operatorname{Cu}^{+}, \quad E^{\circ} = 0.15 v$$
 $\operatorname{Cu}^{+} + e^{\circ} \longrightarrow \operatorname{Cu}, \quad E^{\circ} = 0.50 v$

(5)

32. (a) What is lanthanide contraction? Give reason.

2

3

(b) Explain how lanthanides are separated by ion-exchange method.

33. (a) Using VBT, explain the formation of $[Fe(H_2O)_6]^{2+}$. Comment on its magnetic character.

(b) Give the IUPAC names of the following: 2
 (i) [(NH₃)₅Cr—OH—Cr(NH₃)₅]Cl₃
 (ii) [Ni(dmg)₂]

- 34. (a) Which of the complex will show strong
 Jahn-Teller distortion? 2

 [Co(en)₃]²⁺ and [Fe(CN)₆]⁴⁻
 - (b) Calculate the CFSE for $[Co(en)_3]^{2+}$ and $[Fe(CN)_6]^{4-}$.
- **35.** (a) Derive the kinetic gas equation in terms of density.
 - (b) Explain the cause of deviation of real gas from ideal behaviour.2

J23**/673**

(Continued)

J23/673

(Turn Over)

3

(6)

36.	(a)	Draw and explain the Andrews isotherm of CO_2 .	3
	(b)	Show that the ratio of most probable velocity, average velocity and root-mean-square velocity is 1:1·128:1·224.	2
37.	(a)	Explain in detail different types of symmetry elements of a cube. Also mention the total number of symmetry elements. $2\frac{1}{2}+\frac{1}{2}$:=3
	(b)	What is the number of Na-atoms and Cl-atoms present in the unit cell of NaCl?	2
38.	(a)	Draw different unit cells for $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$.	2
	(b)	Explain the process of determination of surface using stalagmometer.	3
39.	(a)	For a reaction, $2A+B \rightarrow 3C$, the rate of appearance of C is $1 \cdot 3 \times 10^{-4}$ mol L ⁻¹ s ⁻¹ . Calculate the	
		(i) rate of reaction;	
		(ii) rate of disappearance of A.	2
	(b)	Deduce the integrated rate equation for a second-order reaction when both the	
		reactants are same.	3

(7)

40. (a) The rate constants of a reaction at 500 K and 700 K are 0.02 s^{-1} and 0.07 s^{-1} respectively. Calculate the value of Ea and A.

(b) Explain the criteria of effective collision in the light of collision theory of reaction rate.

3

2

 $\star\star\star$

2023/TDC(CBCS)/EVEN/SEM/ CHMDSC/GE-401T/337