2023/TDC(CBCS)/EVEN/SEM/ CHMHCC-201T/331 ### TDC (CBCS) Even Semester Exam., 2023 (Honours) (2nd Semester) Course No.: CHMHCC-201T (Organic Chemistry—I) Full Marks: 50 Pass Marks: 20 Time: 3 hours The figures in the margin indicate full marks for the questions ### SECTION—A Answer any ten questions: 2×10=20 - 1. Draw the orbital picture of $CH_3CH=C=0$. - 2. Write the canonical forms of the following carbocation and indicate with reason, the most contributing canonical form: 3. Between sodium chloride and sodium bromide in dimethyl sulfoxide (DMSO) solution, Cl ion behaves as a better nucleophile than Br ion. Explain. 4. Carry out the synthesis of using Wurtz-Fittig reaction. Comment on the choice of the starting materials. 5. Identify A and B for the following reactions: - 6. Give the major products of the reaction of 1-methylcyclohexene with the following reagents separately: 1+1=2 - (a) HBr - (b) HBr/Peroxide - 7. Arrange the following species according to their stability. Give reason of your choice: 1+1=2 - (a). _____ - (b) ____ - (c) _____ - 8. Although all C—C bonds are equal length, C_1 — C_2 bond length in naphthalene is 1.365 Å. While for C_2 — C_3 , it is 1.404 Å. How do you account for this? - 9. What would be the product composition if an equimolar mixture of toluene and chlorobenzene is treated with 1 molar proportion of bromine in presence of iron powder? Predict with plausible reaction mechanism involved. - 10. Give examples which corroborate the following facts: 1+1=2 - (a) A meso compound having three chiral centres - (b) A chiral molecule that cannot be resolved - 11. Draw the Fischer projection formula of (2S, 3R)-3-chloro-butan-2-ol and convert it into Newman projection formula (any conformer). - 12. Mention whether ligands H_a and H_b in each of the following compounds are homotopic/enantiotopic or diastereotopic: 1+1=2 (4) - 13. Indicate the preferred conformation of *trans*-1,3-di-tert-butyl cyclohexane with proper reasons. - **14.** Discuss the symmetry and optical activities of *cis* as well as *trans*-1,2-dimethylcyclohexane - 15. Equal amounts of (a, a) and (e, e) conformers of trans-1,2-dibromocyclohexane exist in non-polar solvents but the (e, e) conformation prevails in polar solvent. Explain. #### SECTION—B Answer any five questions: 6×5=30 - 16. (a) Tertiary butyl alcohol is miscible in water in all proportions but 1-butanol is partially miscible. Account for the observation. - (b) Comment on the relative stabilities of the following carbocations: H₃C \ \Phi $$H_3C$$ \oplus CH_3 CH_3 CH_3 - (c) Compare and explain the dipole moments of the following compounds: 3 CH₃—CH₂—Cl, H₂C=CH—Cl, HC=C—Cl - 17. (a) Compare the basicities and nucleophilicities of NH₃, NH₂NH₂ and NH₂OH. Give reasons. (b) Explain which C—N bond, a or b has a shorter bond length in the following compound: (c) Write IUPAC names of the following compounds: O 1+1=2 18. (a) Give the structures of all possible alkenes that could form in the following reaction. Indicate the major product and explain its formation: $$\begin{array}{c|c} & \xrightarrow{\text{heat}} \\ & C_2H_5 \\ \text{H}_3C & \text{NMe}_3OH \end{array}$$ (b) Indicate suitable reagents to carry out the following conversions (show the intermediate compounds and mechanisms): Me 1½+1½=3 $$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{Me} \\ \text{OH} \\ \\ \text{Me} \\ \text{OH} \\ \\$$ J23**/537** (Turn Over) 11/2 ## (6) 19. (a) Write the structure of product(s) of the following reaction and comment on the relative amount (%) of the product(s). 1+1=2 (b) Write down the products of the following reactions with plausible mechanisms: 2+2=4 (i) $$CH_3 = (i) B_2H_6 \text{ in THF} / (ii) H_2O_2/\text{aq. NaOH}$$? (ii) $$H_3C-CH_2-C=CH \xrightarrow{H_2SO_4/Hg^{2+}}$$? - **20.** (a) Explain why aniline is more reactive than acetanilide in electrophilic substitution. - (b) Predict the products and outline the mechanisms for each of the following reactions: 2+2=4 2 (i) $$CH_3$$ $$CH_3$$ $$CH_2-Cl \xrightarrow{Anhydrous AlCl_3} CH_3$$ (ii) $$+ ICI \xrightarrow{\text{FeBr}_3}$$? - 21. (a) Provide Haworth synthesis of anthracene. - (b) Provide the synthesis of the following compounds. You can use any reagent and solvent for the purpose: 1½+1½=3 22. (a) Assign R/S and E/Z configurations of the following compounds: 1×3=3 (ii) $$H_3C$$ $C=C=C_{ini}$ C_2H_5 (iii) $$C_2H_5$$ $C=C$ CH_2 $C=C$ CH_2NH_2 (b) Draw the Fischer projection of a mesoisomer of H₃C(CHOH)₃CH₃ and point out the stereogenic and achirotopic centre(s), if any, in it. Explain. # 181 | 23. | (a) | What is meant by enantiomeric excess (ee)? The pure (+) enantiomer of a compound shows a specific rotation of +80°. Calculate the percentage of the (-) enantiomer of the same compound in a partially resolved sample showing a specific rotation of -20°. 1+2=3 | |-----|-----|---| | | (b) | Write all possible stereoisomers of the following compound and comment on their optical activity: H ₃ C—CH=CH—CH(CH ₃)—CH=CH—CH ₃ | | 24. | (a) | With appropriate conformations, delineate the preferred pathway for chair—twist boat interconversion of cyclohexane. Which symmetry element is retained along the pathway? Discuss. | - - Draw all possible conformations of (b) 1,3-dihydroxy cyclohexanes. conformation is most stable one? Which one is optically active? - (a) What is Sachse-Mohr theory? Explain. 21/2 25. - (b) Applying conformational analysis. explain the observation that one of the diastereomers of 4-hydroxycyclohexanecarboxylic undergoes facile acid lactonization on brief heating. 21/2 - Draw boat conformation of cyclohexane (c) in Newman Projection. 1 * * * 2023/TDC(CBCS)/EVEN/SEM/ CHMHCC-201T/331 3