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Introduction:  

 

The general nonlinear Conjugate Gradient method always considers critical initial 

search direction to find a convergent solution. In the present work our aim is to 

establish the fact that the convergent solution can also be obtained for nonlinear 

function, even if the initial search direction is different from the initial search 

direction taken in most of the algorithms of the nonlinear Conjugate Gradient 

method. In the present work we try to established the above mentioned fact 

theoretically.  

 

Conjugate Gradient(C.G) methods comprise a class of unconstrained 

optimization algorithms which are characterised by low memory requirements 

and strong local and global convergence properties. In the seminal 1952 paper of 

Hestenes and Stiefel, the algorithm is presented as an approach to solve 

symmetric, positive-definite linear systems. 

 

A non-linear unconstrained optimization problem can be stated as  

min{ ( ) : }nf x x R       (4.1) 

Where  : nf R R  is a continuously differentiable function especially if the 

dimension is very large. 

The Conjugate Gradient method to solve the general nonlinear problem defined 

by (4.1) is of the form   

                                       1k k k kx x d          (4.2) 

where   k  is a step size obtained by a line search and kd  is the search direction 

obtained by    

                                      
1

, 1

, 2

k

k

k k k

g k
d

g d k 

 
 

                                              (4.3)

 

 Where k is a parameter and  kg  denotes ( )kf x where the gradient  ( )kf x  of 

f at kx  is a row vector and  kg  is a column vector. Different C.G methods 

correspond to different choices for the scalar k . 
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It is known from (4.2) and (4.3) that only the step size 
k  and the parameter 

k  

remain to be determined in the definition of Conjugate Gradient method. In this 

case that if f is a convex quadratic, the choice of 
k  should be such that the 

method (4.2)-(4.3) reduces to the linear Conjugate Gradient method if the line 

search is exact namely 

arg min{ ( ); 0}k k kf x d    
     (4.4)

 

 

For non linear functions, different formulae for the parameter  
k  result in 

different Conjugate Gradient methods and their properties can be significantly 

different. To differentiate the linear Conjugate Gradient method, sometimes we 

call the Conjugate Gradient method for unconstrained optimization by nonlinear 

Conjugate Gradient method. Meanwhile the parameter k is called Conjugate 

Gradient parameter. The equivalence of the linear system to the minimization 

problem of 1
2

T Tx Ax b x  Motivated Fletcher and Reeves to extend the linear 

Conjugate Gradient method for nonlinear optimization. This work of Fletcher and 

Reeves in 1964 not only opened the door of nonlinear C.G Field but greatly 

stimulated the study of nonlinear optimization.  

 

In general the nonlinear Conjugate Gradient method without restarts is only 

linearly convergent(See Crowder and Wolfe[54]) while n-step quadratic 

convergence rate can be established if the method is restarted along the negative 

gradient every n-step.(See Cohen [55] and McCormick and Ritter[56]) 

 

In 1964 the method has been extended to nonlinear problems by Fletcher and 

Reeves [44], which is usually considered as the first nonlinear Conjugate 

Gradient algorithm. Since then a large number of variations of Conjugate 

Gradient algorithms have been suggested. A survey on their definition including 

40 nonlinear Conjugate Gradient algorithms for unconstrained optimization is 

given by Andrei[73].Since the exact line search is usually expensive and 

impractical, the strong Wolfe line search is often consider the implementation of 

the nonlinear Conjugate Gradient methods .It aims to find a step size satisfying 

the strong Wolfe conditions. 
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( ) ( ) T

k k k k k k kf x d f x g d        (4.5) 

( )T T

k k k k kg x d g d         (4.6) 

Where 0 1     

                                  

The strong Wolfe line search is often regarded as a suitable extension of the exact 

line search since it reduces to the latter. If   is equal to zero, in practical 

computation a typical choice for   that controls the inexactness of the line search 

is  =0.1.On the other hand general non linear function ,one may be satisfy with 

a step size satisfying the standard wolf conditions ,namely and 

                            
( )T T

k k k k k kg x d d g d  
      (4.7) 

    
0 1.     

As is well known the standard Wolf line search is normally used in the 

implementation of Quasi-Newton methods, another important class of methods 

for unconstrained optimization. The work of Dai and Yuan indicates that the use 

of standard Wolfe line search is possible in the nonlinear Conjugate Gradient 

field. A requirement for an optimization method to use the above line searches is 

that, the search direction kd must have descent property namely 

     0T

k kg d        (4.8) 

For Conjugate Gradient method, by multiplying (4.3) with T

kg , we have 

2

1

T T

k k k k k kg d g g d     

Thus if the line search is exact, we have 2T

k k kg d g   since 
1 0T

k kg d   . 

Consequently dk  is descent provided  0kg  . 

In this work we assume that a Conjugate Gradient method is descent if (4..8) 

holds for all k and is sufficient descent if the sufficient descent condition 

2T

k k kg d c g   

Holds for all k and some constant c>1.However we have to point out that the 

borderlines between these Conjugate Gradient methods are not strict. 

 

Any Conjugate Gradient algorithm has very simple and the prototype of the 

general nonlinear Conjugate Gradient algorithm can illustrated as follows: 
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Step1: Select the initial stating point  

 
0x dom f  and compute 

0f and  
0 0( )g f x  

0 0 0d g and k    

Step2: Test a criterion for stopping the iteration.  

For example, if  
ks g  , then stop otherwise continue with step 3 

 Step3: Determine the step length 
T

k k
k T

k k

g d

d d
   

Step4: Update the variables as: 1k k k kx x d    

 Compute 1kf   and 1kg   

Compute  1k k ky g g  and  1k k ks x x   

Step5: Determine k  

Step6: Compute the search direction as: 1 1k k k kd g s     

Step7: Restart criterion.  

For example if the restart criterion of Powell 
2

1 10.2T

k k kg g g   is 

satisfied , 

then set 1 1k kd g    

Step8: Compute the initial guess 1 1k k

k

d

d

   , set  1k k   and continue with 

step 2. 

This is a prototype of the conjugate gradient algorithm but some more 

sophisticated variants are also known  

These variants focus on parameter k  computation and on the step length 

determination. 

 

The objective of this present work is to search an initial search direction other 

than 0 0d g   for general unconstrained nonlinear Conjugate Gradient method 

and to establish the fact that the general unconstrained nonlinear conjugate 

gradient algorithm can be used with this new search direction. The other 

objective of the present paper is to test the convergence of the Conjugate 

Gradient algorithm for this new search direction.  
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Already the Conjugate Gradient method has been devised by Magnus Hestenes 

(1906-1991) and Eduard Stiefel (1909-1978) in their seminal paper where an 

algorithm for solving  symmetric, positive-definite linear algebraic systems has 

been presented and after a relatively short period of stagnation ,the paper by Reid 

brought the Conjugate Gradient method as a main active area of research in 

unconstrained optimization and later in 1964 the method has been extended to 

nonlinear problems by Fletcher and Reeves. 

 

In the present work of this thesis, we will assume that the initial search direction 

for the nonlinear conjugate gradient algorithm is slightly deflect from the 

direction -
0g . 

In  our work, instead of 0 0d g   we have taken the initial search direction as 

                                                    0 0 0d g g                                               (4.9) 

Where   is very small and 0 1  .The values of  k  can be obtained by  (4.9) 

in 
T

k k
k T

k k

g d

d d
   

Therefore for 0k   we have 

                                                  

0 0
0

0 0

0 0

0 0(1 )

1

1

T

T

T

T

g d

d d

g g

g g














 
     (4.10)

  

Putting the value of k  in (1.2) (chapter 1) 

for 1k   

                                                     
0 0

1 0 0

1
(1 )

1
x x g

x x g




  


  

  

          (4.11) 

Therefore                       
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1 1 1 0

1 1 0

2

1
1 02

0

1 0

(1 )

(1 )

d g d

g g

g
g g

g

g Lg



 



  

   

   

      (4.12)

 

Where  
2

1

2

0

(1 )
g

L
g

 

       (4.13) 

Which gives 

2
2 21

1 1 1 1 0 12

0

(1 )T Tg
g d g g g c g

g
     

  (4.14)

 

Therefore                                                         

1 1
1

1 1

2

1 1 0

2 2

1 1 0 0 1 1( ) (1 )

T

T

T

T T

g d

d d

g Lg g

g L g g g g L g










      (4.15)

 

 

Neglecting the remaining terms . 

Again for  2k                 

2 1 1 1x x d   

                    

2

1 1 0
1 1 02 2

0 1 0 0 1 1

( )
( ) (1 )

T

T T

g Lg g
x g Lg

g L g g g g L g


  

   
 

                          

2

1 1 0 1 0

2 1 2 2

0 1 0 0 1 1

( )

( ) (1 )

T

T T

g Lg g g Lg
x x

g L g g g g L g

 
  

   
  (4.16)

 

 

 Continuing as above we have  

2

1 1
1 2 2

1 1 1 0

( )( )

( ) (1 )

T

k k k k k
k k T T

k k k k k

g Lg g g Lg
x x

g L g g g g L g
 



  

 
 

   
 

      
2 2 4

1 1

1

(1 )k k k

c

g g g 


 

 



42 
 

      
2

1

1

(1 ) k

c

c g 


 

       (4.17)

 

       
1 2

1

1
[ 1, 1]

(1 )
k k

k

c
x x c

c g c




    
 

 

    
2

1(1 ) k

c

c g 


 

 

     
2 1

(1 )

c

c
c



 

 

 (say)         1

1
[ ]kg

c
        (4.18) 

   

Therefore  kx  converges again from (4.2) and (4.3)  

1

1

( ) ( )

k k k k

k k k k

T

k k k k k k k n

x x d

d g d

f x d f x d g R





 





 

  

   

 

Here nR  is the remainder after n terms. 

Therefore, 

( ) ( ) T

k k k k k k kf x d f x d g     

Applying Taylor’s series ,we have 

1

1

2
2

( ) ( )

( ) ( ) ( ) ( ) .....
1 2

k k k k

k k k k

T

k k k k k k k

T

k k k k k
k k k x k k

x x d

d g d

f x d f x d g

d d d
f x d f x f x f x





 

 






 

  

  

       

  

                                                                                                                                                              

Again from Wolfe conditions, 

1

1

1

2

1

2

( ) ( )

{( ) }

( ) ( )

( ) ( ) 0

k k k k

k k k k

T

k k k k k k k

T

k k k k k

T

k k k k k k

k k k k k k

k k k k

x x d

d g d

f x d f x d g

g g d

g g d

f x d f x g

f x d f x





 

 

  

 











 

  

  

  

  

    

   
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Therefore 

1 1 0( ) ( ) ( ) ............... ( ) ( )k k k k kf x d f x f x f x f x      
 

From above we can observe that the function satisfies the Wolfe Conditions and 

so it is convergent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


