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Introduction: 

Because of the advances in  Science, Engineering, Economics etc studies on 

global and local optimization for unconstrained problems have become a topic of 

great concern. In recent years there has been the great deal of interest in the 

development of optimization algorithms that deal with the problems of finding a 

global or local minimum of a given problem.. Unconstrained optimization 

problem arise in virtually in areas in Science and Engineering, and in many areas 

of the Social Sciences. A significant percentage of real world optimization 

problems are data fitting problem. The size of real world unconstrained 

optimization problem is widely distributed, varying from small problems to large 

problems. In many cases, the objective function ( )f x is a complete routine that is 

expensive to evaluate so that even small problems are expensive and difficult to 

solve. The user of an unconstrained optimization problem is expected to provide 

the function ( )f x  and a starting guess to the solution ox  .The routine is expected 

to return and estimate of local minimiser *x (say) of f(x).But in most cases they 

are not provided and instead is approximated in various ways by the algorithm. 

Approximating these derivatives is one of the main challenges of creating 

unconstrained optimization method. The other main challenges to create methods 

that will converge to a local minimiser even if ox far from any minimum points. 

These referred to as the global phase of the method. The part of the method that 

converges to ox , once it is closed to it is referred as the local phase of the method. 

 For problems with large number of variables, the number of arithmetic 

operations required by the method and storage requirement of the method become 

increasing important. 

 

There are different methods to solve the unconstrained optimization problems. 

Some of the popular methods are as follows: 

 

Direct Search method 

Over the last few decades many powerful direct search algorithms have been 

developed for the unconstrained minimization of general functions. These 

algorithms require an initial estimate to the optimum point, denoted by x0. With 

this estimate as starting point, the algorithm generates a sequence of estimates x0, 
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x1, x2, . . . , by  successively searching directly from each point in a direction of 

descent to determine the next point. The  process is terminated if either no further 

progress is made, or if a point xk is reached at which the first necessary condition 

( ) 0f x   

 

Descent method with line search: 

 

An important sub-class of direct search methods, specifically suitable for smooth 

functions, are the so-called  line search descent methods. Basic to these methods 

is the selection of a descent direction ui+1 at each iterate x* that ensures descent at 

x* in the direction ui+1, i.e. it is required that the directional derivative in the  

direction ui+1 be negative i,e., i+1( )u 0T if x   

 

Sequence of line search descent directions and steps 

 

Descent method with trust region : 

Soft line search method : 

Many researchers in optimization have proved their inventiveness by producing 

new line search methods or   modifications to known methods. In the early days 

of optimization exact line search was dominant. Now, soft line search is used 

more and more, and we rarely see new methods presented which require exact 

line search. 

 

An advantage of soft line search over exact line search is that it is the faster of the 

two. If the first guess on the step length is a rough approximation to the 
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minimizer in the given direction, the line search will terminate  immediately if 

some mild criteria are satisfied. The result of exact line search is normally a good 

approximation to the result, and this can make descent methods with exact line 

search find the local minimizer in fewer  iterations  than what is used by a 

descent method with soft line search. However, the extra function evaluations 

spent in each line search often makes the descent method with exact line search a 

loser. 

 

The purpose of the algorithm is to find  
s , and acceptable argument for the 

function ( ) ( )f x h    . 

The acceptability is decided by the criteria  

( ) ( )s s     where ( ) (0) (0)      with 0 0.5   

and ( ) (0)s     with 1    

 

This criteria express the demands that s  must be sufficiently small to give a 

useful  decrease in the objective function and sufficiently large to ensure that the 

starting tangent of the curve ( )y    for 0   

 

The algorithm has two parts: 

Part 1: To find an interval [a,b] that contains acceptable points 

Part 2: Successive reduction of the interval. 

The graphical representation is as follows 
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Steepest descent method: 

 

In this method, for each iteration of line minimization the direction is chosen to 

be the local downhill gradient −∇f(p). However, though along the downhill 

gradient to begin with at p, the vector n becomes perpendicular to the local 

gradient of f(x) where the current line minimum occurs. 

Consequently, the vector n has to make a 90◦ turn for every iteration. 

This results in a zigzag path along a “long valley” to the final minimum of f(x) 

 

 

 

 

 

 

 

 

 

 

 

 

Newton’s method: 

It is widely used for solving systems of nonlinear equations and until recent it 

was also widely used for solving unconstrained optimization problem. 

In order to derive Newton’s method in the version used in optimization, truncated 

Taylor expansion is use that the current iterate x 

( ) ( )f x h q h  where q(h) is the quadratic model of f in the vicinity of x, 

1
( ) ( ) ( ) ( )

2

T Tq h f x h f x h f x h     

The idea now is to minimize the model q at the current iterate.  If ( )f x  is 

positive definite, then q has a unique minimiser at a point where the gradient of q 

equals zero, ie where ( ) ( ) 0f x f x h    

Hence in Newton’s method the new iteration step is obtained as a solution to the 

system ( ) ( ) 0f x f x h    
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Newton’s method is well defined as long as ( )f x  remains non-singular. Also, if 

the Hessian is positive definite, then h is downhill. Further, if ( )f x stays positive 

definite in all the steps and if the starting point is sufficiently closed to a 

minimiser, the method usually converges rapidly towards such a solution. 

 

Conjugate gradient method 

 

The Conjugate gradient method represents major contribution to panoply of 

methods for solving large scale optimization problems. They are characterised by  

 Low memory requirements . 

 Strong local and global convergence properties. 

 

 

 

The popularity of these method is remarkable partially due to their simplicity 

both in the algebraic expression and their implementation in computer codes and 

partially due their efficiency in solving large scale unconstrained optimization 

problem. 

The development of conjugate gradient method begins with research of Cornelius 

Lanczos and Magnus Hestens and others(Forsythe, Motzkin, Rosser, Stein) at the 

institute at Numerical Analysis (National Applied Mathematics Laboratories of 

United States National Bureau of Standards in Los Angeles),and with 

independent research of Eduard Stiefel. 
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The first paper on  conjugate gradient method was presented in 1952 by Magnus 

Hestenes and Eduard Stiefel[45] .In that paper an algorithm for solving symmetric, 

positive definite linear algebraic system has been presented. After a relatively 

sort period of stagnation the paper by Reid got the conjugate gradient method as a 

main active area of research in unconstrained optimization, In 1964 the method 

has been extended by Fletcher and Reeves[44] , which is usually considered as the 

first nonlinear  Conjugate Gradient algorithm. Since then a large number of 

variants of Conjugate Gradient algorithms have been suggested. Even if the 

Conjugate Gradient methods are now 50 years old, they continue to be a 

considerable interest particularly due to their convergence properties, a very easy 

implementation effort in computer programme and due to their efficiency in 

solving large scale problems. 

 

In this survey, we focus on conjugate gradient methods applied to the linear 

unconstrained optimization problem 

                                        min{ ( ) : }nf x x R      (1.1) 

Where  : nf R R  is a continuously differentiable function especially if the 

dimension n is large.  

They are of the form  1k k k kx x d          (1.2) 

Where   k  is a step size obtained by a line search and kd  is the search direction 

botanised by 

                                               1

, 1

, 2

k

k

k k k

g k
d

g d k 

 
 

  
        (1.3) 

Where k is a parameter and  kg  denotes ( )kf x where the gradient  ( )kf x  of f 

at kx  is a row vector and  kg  is a column vector .Different C.G methods 

correspond to different choices for the scalar k . 

It is known from (1.2) and (1.3) that only the step size k  and the parameter k  

remain to be determined in the definition of Conjugate Gradient method. In this 

case that if f is a convex quadratic, the choice of k  should be such that the 

method (1.2)-(1.3) reduces to the linear Conjugate Gradient method if the line 

search is exact namely 
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arg min{ ( ); 0}k k kf x d    
      (1.4) 

 

For non linear functions, different formulae for the parameter  
k  result in 

different Conjugate Gradient methods and their properties can be significantly 

different. To differentiate the linear Conjugate Gradient method, sometimes we 

call the Conjugate Gradient method for unconstrained optimization by nonlinear 

Conjugate Gradient method. Meanwhile the parameter k is called Conjugate 

Gradient parameter. The equivalence of the linear system to the minimization 

problem of 1
2

T Tx Ax b x  Motivated Fletcher and Reeves to extend the linear 

Conjugate Gradient method for nonlinear optimization. This work of Fletcher and 

Reeves in 1964 not only opened the door of nonlinear C.G Field but greatly 

stimulated the study of nonlinear optimization. In general the nonlinear 

Conjugate Gradient method without restarts is only linearly convergent(See 

Crowder and Wolfe[54]) while n-step quadratic convergence rate can be 

established if the method is restarted along the negative gradient every n-

step.(See Cohen [55] and McCormick and Ritter[56]). 

 

In 1964 the method has been extended to nonlinear problems by Fletcher and 

Reeves [44], which is usually considered as the first nonlinear Conjugate 

Gradient algorithm. Since then a large number of variations of Conjugate 

Gradient algorithms have been suggested. A survey on their definition including 

40 nonlinear Conjugate Gradient algorithms for unconstrained optimization is 

given by Andrei[57].Since the exact line search is usually expensive and 

impractical, the strong Wolfe line search is often consider the implementation of 

the nonlinear Conjugate Gradient methods .It aims to find a step size satisfying 

the strong Wolfe conditions. 

( ) ( ) T

k k k k k k kf x d f x g d       (1.5)

  

   ( )T T

k k k k kg x d g d        (1.6) 

   0 1where      

The strong Wolfe line search is often regarded as a suitable extension of the exact 

line search since it reduces to the latter. If   is equal to zero, in practical 
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computation a typical choice for   that controls the inexactness of the line search 

is  =0.1.On the other hand general non linear function ,one may be satisfy with 

a step size satisfying the standard wolf conditions , namely (1.5) and 

 

( )T T

k k k k k kg x d d g d  
      (1.7)

  0 1.where                                             

 

As is well known the standard Wolf line search is normally used in the 

implementation of Quasi-Newton methods, another important class of methods 

for unconstrained optimization. The work of Dai and Yuan indicates that the use 

of standard Wolfe line search is possible in the nonlinear Conjugate Gradient 

field. A requirement for an optimization method to use the above line searches is 

that, the search direction kd must have descent property namely 

   0T

k kg d 
                (1.8)

 

For Conjugate Gradient method, by multiplying (1.3) with T

kg , we have 

 

2

1

T T

k k k k k kg d g g d     

 

Thus if the line search is exact, we have 2T

k k kg d g   since 
1 0T

k kg d  

.Consequently dk  is descent provided  0kg  .In this paper we say that a 

Conjugate Gradient method is descent if (1.8) holds for all k and is sufficient 

descent if the sufficient descent condition 

 

2T

k k kg d c g   

 

Holds for all k and some constant c > 0.However we have to point out that the 

borderlines between these Conjugate Gradient methods are not strict. 

If  1k k ks x x   and in the following 1k k ky g g  .Different Conjugate Gradient 

algorithms corresponds to different choices for the parameter k . 
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Sequence of points obtained by Conjugate Gradient Method 

 

The Conjugate Gradient method (CG) has always played a special role in 

nonlinear optimization. It is related to quasi-Newton methods in many interesting 

ways that are being investigated to this day with the purpose of designing faster 

algorithms for large optimization. The Conjugate Gradient method can also be 

modified to produce a class of algorithms called nonlinear Conjugate Gradient 

methods that possess unique properties among optimization methods. In addition 

the Conjugate Gradient method can be used as an iterative linear solver in 

implementations Newton and quasi-Newton methods, and by fully exploiting the 

subspace minimization properties CG, these implementations give rise to robust, 

economical and rapidly convergent optimization methods. 

 

Let us begin with a brief historical account of the Conjugate Gradient method in 

nonlinear optimization. The  story begins with Davidon’s invention of Quasi-

Newton (or variable metric)methods in the late  1950s.Unknowing the existence 

of the Conjugate Gradient method, Davidon proposed an algorithm for nonlinear 

optimization that possess a fast rate of convergence and finite termination on 

quadratic objective functions. A few years later Fletcher and Powell showed that 

the algorithm is equivalent to the Conjugate Gradient method when applied, with 

exact line searches , to convex quadratic functions; the algorithm thus came to be 

known as the Davidon-Fletcher-Powell(DFP) method. During the next ten years, 

several refinements and variations of the DFP method gave rise to the very 

effective quasi-Newton algorithms used today with great, success in a great 
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variety  of areas of application. The very popular BFGS method is a direct 

descendent of the DFP method. 

 

Almost immediately after the publication of the DFP method, Fletcher and 

Reeves [44] proposed another algorithm for nonlinear optimization that appeared 

to be even more closely related to the Conjugate Gradient method. Unlike quasi-

Newton methods, the algorithm of  

 

Fletcher and Reeves does not require matrix storage and is very similar in form to 

the Conjugate Gradient method. It was the first non linear Conjugate Gradient 

method and subsequent research showed that a simple variation due to Polak and 

Ribiere gives good practical performance. Nonlinear Conjugate Gradient methods 

are designed so as to be equivalent to the (linear) Conjugate Gradient method . 

 

The DFP and Fetcher Rletcher-Reeves methods marked the beginning of a new 

era in nonlinear optimization and much of the research performed during the last 

30 years is directly related to these two seminal algorithms. It has been shown 

[68] ,[69],[70],[71],[72], that quasi Newton and nonlinear Conjugate Gradient 

methods can be related in various ways, most notably by introducing adaptive 

preconditioning techniques in the nonlinear Conjugate Gradient methods. 

Research Performed during the 1980s showed that there is a class of algorithms 

that fills the gap between quasi-Newton and Conjugate Gradient methods and 

considerable effort was devoted to finding an algorithm with the right balance 

between these two approaches. It turned that the two most successful algorithms 

for large scale optimization that emerged in the 1980s-quasi-Newton methods for 

partially separable optimization and limited memory methods-lie completely in 

the domain of quasi-Newton methods, Thus the pendulum has swung towards the 

quasi-Newton approach, and at present, nonlinear Conjugate Gradient methods 

do not play a dominant role in numerical optimization.    

 

Nevertheless the linear Conjugate Gradient method continues to gain importance 

in the implementation of Newton-type methods for both constrained and 

unconstrained optimization. In addition, the interplay between the linear 

Conjugate Gradient method and nonlinear optimization algorithms is currently 
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being explored with the goal of designing more robust and cost-effective 

algorithms for large scale optimization. 

 

An iterative method for minimizing a real function f  on nR  can be described by 

sequence of moves from an initial point 0x  to a new point 1x  and so on, where 

the successive points are given by the relation 

  
1k k k

kx x z       (1..9) 

Where 1kx   is the current point , kz is the direction vector along which we move  

and k is the step length. Suppose that the direction kz is given and k is chosen 

so that the function f  is minimized along kz .Let 

                                                1( ) ( )k k

k kF f x z  
 

   (1.10) 

and at *

k ,the minimum of F ,we have 

                              
*

1 *( )
( ) ( ) ( ) ( ) 0k T k k k T kk

k

k

dF
z f x z z f x

d






                (1.11) 

Assume that  f is quadratic function, given as before by  

                                           
1

( )
2

T Tf x a b x x Qx                                         (1.12) 

Where Q  Is an n n  symmetric positive definite matrix. In this case the gradients  

of  f at any two points are related by  

                             1 1( ) ( ) ( )k k k kf x f x Q x x                                            (1.13)                                                         

If  1 *k k k

kx x z  ,then from (1.9),(1.11)and (1.13),we obtain an explicit formula 

for *

k : 

                                 
1

* ( ) ( )

( )

k T k

k k T k

z f x

z Qz



                                                       (1.14) 

The relation between the function values at two points is given by  

1 1 1 1 11
( ) ( ) ( ) ( ) ( ) ( )

2

k k k k T k k k T k kf x f x x x f x x x Q x x              (1.15) 

and  by (1.9) to (1.15),  

                      
2

1 1[( ) ( )]
( ) ( )

2( )

k T
k k k

k T k

z f x
f x f x

z Qz

 
                                            (1.16) 
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Since Q  is assumed to be positive definite, the  right hand side of this equation is 

nonnegative  for 0kz  and is positive if kz  is not orthogonal to 1( )kf x  .In the 

latter case, the algorithm is called a descent method, since  1( ) ( )k kf x f x   .We 

only require  1( ) ( ) 0k T kz f x    so it follows from (1.14)  that if  

1( ) ( ) 0k T kz f x   ,then * 0k  (In our discussion of the steepest descent method 

we knew that the preceding scalar product is negative ,which implies * 0k  ). 

 

In addition to having a descent minimization method, we would also like to have 

an algorithm that converges rapidly or, even better, that terminates in a finite 

number of steps when applied to minimizing a quadratic function .Since general 

nonlinear function  can be reasonably well approximated  by a quadratic function 

in the neighbourhood of a minimum ,the quadratic termination property seems 

desirable for fast convergence in the case of general functions .It follows that if 

the search direction  
kz  are mutually conjugate with respect to Q  for 

1,2,..........,k n  ,then the point nx  attained will be the exact minimum of the 

quadratic function f .The choice of the conjugate directions can be done in the 

following way. 

 

Suppose that we start at a point  0 nx R  and choose  

                                                               1 0( )z f x   

The next point is  

                                                               1 0 * 1

1x x z   

Where *

1  is given by (1.14).Evaluate 1( )f x  and set  

                                                           2 1

11 1( )z f x z    

Where 11  is a number chosen so that 
1z  and  

2z will be conjugate with respect to 

Q. Hence 

                        1 2 1 1 1

11( ) ( ) ( ( ) ) 0T Tz Qz z Q f x z     

And  when move from 1x along the direction 
2z  to a new point 2x  then  compute 

2( )f x .The new direction 
3z  (provided that 3n  )should be conjugate both 

1z  

and 
2z . 
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Considering                              3 2 1 2

21 22( )z f x z z      

Where 
21 22and   are chosen so that 1 3 2 3( ) ( ) 0T Tz Qz z Qz  . 

In general it is obtained as  

                           1 ( ) , 0,1,..........., 1k k j

kjz f x z k n       (1.17) 

The difficulty with this formula is that the coefficients  
kj are functions of Q

,and in trying to use (1.17) for a non-quadratic function, it is required to compute 

Hessian matrices, an undesirable operation. These directions can be generated 

without the explicit use of  Q .          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


