

65

CHAPTER 6

Computational Morphology and Manipuri

 Computational morphology is one of the important parts of computational

linguistics which deals with the processing of words in both their graphemic, i.e.

written form and phonemic, i.e. spoken form [59]. It includes the analysis of

word formation methods, morpheme segmentation, hyphenization and error

correction etc. These tasks may appear very easy to a human but they create

difficult problems to a computer program.

6.1 Roots and Affixes in Manipuri

 As Manipuri is an agglutinative language, roots and affixes play a very

important role in the processes of word formation. It is eagerly required to

analyse the roots and affixes in the development of any computational linguistics

applications like morphological analyser, POS tagger, etc. of the language.

6.1.1 Roots

 A root is a form of word which cannot be further analysed either in terms

of derivational and inflectional morphology. It is a base word, or a primary

lexical unit of a word form that remains when all derivational or inflectional

affixes are removed. Technically, it is the smallest unit of a word called

morpheme and it cannot be reduced into smaller units. There are two types of

root, viz; free and bound roots.

Free roots: Roots which can stand alone as a word without adding the affixes to

it is called free roots. Most of the nouns in Manipuri are free roots.

66

e.g.; থা / thaa “moon” মী / mee “man”

চীঙ / cheeng “mountain” ঈিশং / eesing “water”

Bound roots: Roots which cannot stand alone as a word without adding the

affixes to it is called bound roots. All verb roots in Manipuri are bound roots.

 e.g.; পা /paa “read” চা /chaa “eat”

 চ�/chat “go” েচন/chen “run”

There are limited numbers of nominal bound roots in the language.

Nominal bound roots are mainly found in the Manipuri kinship terms and animal

body parts. Examples of kinship terms:

 মা/ maa ‘mother’

 েচ/ che ‘sister’

Until and unless one of the personal pronominal ই-/i- (first person), ন-/na-

(second person) and ম-/ma- (third person) is added as prefix, it does not give a

complete meaning, for instance;

 ইমা / i-maa ‘my mother’

 নমা / na-maa ‘your mother’

 মমা / ma-maa ‘his/her mother’

Examples of animal body parts:

 মিচ / ma-chi ‘horn’

 মৈম / ma-mei ‘tail’

Here, -িচ / -chi and -ৈম / -mei are the bound roots which cannot be stand

independently as a word without prefixing the third person pronominal marker ম-

/ ma- .

67

6.1.2 Affixes

 Affixes are bound morphemes which can only be attached to a root, stem

and base word to form a new word. In an agglutinative language like Manipuri,

affixes play very important role in the formation of various words and deriving

several word classes. Prefixes and suffixes are two types of affixes in Manipuri.

Both types are discussed below:

Prefix: A prefix is an affix which is placed before the root of a word, mostly

used to form word class. Prefixes are very limited in Manipuri. There are limited

numbers of prefixes available in the language. The following table shows the

different types of prefixes used in Manipuri:

Table 6.1: Prefixes in Manipuri

Pronominal Prefixes
Non Pronominal Prefixes

Nominalizing
Prefixes

Formative Prefixes

ই-/i- , ন-/na-, ম-/ma- খু-/khu-, ম-/ma- অ-/a-, ই-/i-, ম-/ma-,ত-

/ta-, থ-/tha-, েস-/se-, পঙ-

/pang, পুঙ-/pung, চ-/cha-

, �ক-/suk, খঙ-/khang-

Examples:

য়ুম/yum ‘house’ ইয়ুম/i-yum ‘my house’

চা/chaa ‘eat’ মচা/ ma -chaa ‘the mode of his eating’

চা/chaa ‘eat’ খুচা/khu-chaa ‘the mode of eating’

েতৗ/tou ‘do’ খুেতৗ/khu-tou ‘the mode of doing’

শাংবা/saangbaa ‘be long’ অশাংবা/ a- saang-baa ‘long’

Suffix: A suffix is an affix which is placed after the root of a word. In Manipuri,

suffix plays an important role to form new word class. So various word forms

68

can be constructed by suffixation of respective markers and various suffixes can

be added one after another, by which meaning is also added. There are numerous

number of suffixes used in Manipuri. Suffixes can be divided into two groups

viz., nominal suffixes and verbal suffixes. The following table shows the nominal

suffixes and verbal suffixes used in Manipuri.

Table 6.2: Suffixes in Manipuri

Nominal

suffixes
-ন/-na, -বু/-bu, -পু/pu, -গী/-gee, -কী/-kee, -দ/-da, -ত/-ta,

-Vী/-dagee, -গ/-ga, -ক/-ka, -িশং/-sing, -েখায়/-khoy, -েন/-ne,

-সু/-su, -র/-ra, -ল/-la ,-িদ/-di, -িত/-ti, -তু/tu, -দু/-du,

-মক/-mak, -মুক/-muk, -রক/-rak, -েস/-se, -েন/-ne, -লক/-lak,

-রক/-rak, -নাউ/-naau, –নাও/-naao

Verbal

suffixes
-য়/-y, –ই/-i, -ির/-ri, -িল/-li, -ের/-re, -েল/-le, -িনঙ/-ning, -িনং/-

ning, -েলায়/-loy, -েলাই/-loi, -েরায় /-roy, –েরাই/-roi, -েদ/-de, -

েত/-te, -নু/-nu, -েলা/-lo, -েরা/-ro, –�/-ru, -য়ু/-yu,-উ/-u, -মু/-

mu, -পু/-pu, -ঙু/ngu-, -েঙা/-ngo, -েপা/-po, -েমা/-mo, -ও/-o, -র/-

ra, -ল/-la, -রক/-rak, -িখ/-khi, -�ই/-rui, -েগ/-ge, -েক/-ke, -িশ/-

si, -িস/-si, -সনু/-sanu, -ন/-na, -না/-naa, -িশন/-sin, -িজন/-jin, -

েশাক/-sok, -�ক/-suk, -ব/-ba, -বা/-baa, -প/-pa, -পা/-paa, -

েরাক/-rok, -েলাক/-lok, -শং/-sang, -িশ�/-sit, -িন/-ni, -িশন/-sin, -

েথাক/-thok, -খ/-kha, -সন/-san, -শন/-san, -চন/-can, -জন/-jan, -

েদাক/-dok, -েতাক/-tok, -খ�/-khat, -খত/-khat, -গ�/-gat, -গত/-

gat, -ক�/-kat, –কত /-kat, -েথৗ/-thou, -খায়/-khaay, –খাই/-khaai,

-গায়/-gaay, –গাই/-gaai, -থক/-thak, -থ�/-that, -কায়/-kaay,

কাই/-kaai, -েথক/-thek, -ত�/-tat, -দ�/-dat, -েদক/-dek, -িমন/-

min, -মন/-man, -মল/-mal, -হন/-han, -হল/-hal, -বী/-bee, -পী/-

pee, -িব/-bi, -িপ/-pi, -েকা/-ko, -কন/-kan, -গন/-gan, -হ�/-hat, -

চ/-ca, -জ/-ja, -কুম/-kum, -Eম/-gum, -লম/-lam, -রম/-ram, -

েন/-ne, -েফ�/-phet, -ে�ক/-prek, -ৈঙ/-Ngei

Examples of nominal suffixes used in Manipuri:

উেচক/uceck ‘bird’ উেচকিশং/uceck- sing ‘birds’

69

িনংেথৗ/ningthou ‘king’ িনংেথৗিশং/ningthou- sing ‘kings’

ঐ/ei ‘I’ ঐেখায়/ ei- khoy ‘we’

নঙ/nang ‘you’ নেখায়/na- khoy ‘you (pl)’

মহাক/m ahaak ‘he’ মেখায়/ma-khoy ‘they’

মিন/mani ‘Mani’ মিনেখায়/mani-khoy ‘Mani and others’

রাজু/raju ‘Raju’ রাজুগী/raju-gi ‘Raju’s’

Examples of verbal suffixes used in Manipuri:

চা/chaa ‘eat’ চাির/chaa-ri ‘eating (progressive)’

চা/chaa ‘eat’ চাের/chaa-re ‘eaten’

চ�/chat ‘go’ চ�েত/chat-te ‘does not go’

চ�/chat ‘walk’ চ�পা/chat-pa ‘walking (vebal noun)’

6.2 Word Formation in Manipuri

 In Manipuri, new words are formed by the following word formation

processes. They are affixation, derivation and compounding. The majority of the

roots found in the language are bound and the affixes are the determining factor

to fix the classes of words in the language. The three processes of word

formation in Manipuri are discussed below.

6.2.1 Affixation

 Affixation is the morphological process of forming a new word by

addition of prefix or suffix to an already existing morpheme or root or word. In

Manipuri, more than one suffix can be added to the root or morpheme or word.

Some rules of the formation of new words by affixation are discussed below:

70

Formation of adjective (MJ):

1. In Manipuri, most of the adjectives are formed by affixation of formative

prefix “অ / a” and nominalizer “বা / baa” or “পা / paa” as suffix to a verb

root (VR).

a + verb root + baa/paa���� adjective

 অ/ a + ফ/pha + বা/baa � অফবা / a-pha-baa ‘good’

 অ/ a + শাং/saang + বা/baa � অশাংবা / a-saang-baa ‘long’

 অ/ a + পাক/paak + পা / paa � অপাকপা / a-paak-paa ‘wide’

The above rule can be coded as:

 if (word.startsWith (“a”) && word.endsWith (“baa”))

 {

 word.tag.set (“MJ”)

}

2. In the case of polysyllabic verb root, an adjective is formed without the

formative prefix “অ / a”.

verb root + baa ���� Adjective

ফজ / phaja + বা / baa � ফজবা/ pha-ja-baa ‘beautiful’

হরাও / haraw + বা / baa � হরাওবা / haraw-baa ‘joyful’

3. Adjective can also be formed by attaching a suffix between verb root and

nominalizer.

verb root + suffix + baa���� adjective

শা�/saat + িল/li + বা/baa � শা�িলবা/saat-li-baa ‘blooming’

71

েচন/chen +িল/ li+বা/baa � েচনিলবা/chen-li-baa ‘running’

প�/pat + ল/la + বা/baa � প�লবা/pat-la-baa ‘rotten’

Computational Model of the above rule can be written as:

if (word.tag.startsWith (“VR”)

&& word.contains (suffix)

&& word.endsWith (“baa”))

 {

 word.tag.set (“MJ”)

}

Formation of adverb (ADV):

In Manipuri adverb is formed by addition of case marker “না/na” as suffix to

verb root.

 verb root + naa ���� adverb

 তপ/tap + না /naa � তপনা/ tap-naa ‘slowly’

 য়াং/yaang + না/naa � য়াংনা/yang-naa ‘quickly’

 কপ/kap +না/naa � কপনা/ kap-naa “cryingly”

Computational Model of the above rule can be written as:

 if (word.tag.startsWith (“VR”) && word.endsWith (“naa”))

 {

 word.tag.set (“ADV”)

}

72

6.2.2 Compounding

 It is also a word formation process in which a word is formed by joining

more than one free roots or words. In Manipuri, it may also be the combination

of free and bound roots. Most of the compound words in Manipuri are nouns.

Some examples of compound words are given below:

1. noun + noun ���� noun

চাক/chaak + শঙ/sang � চাকশঙ/ chaak-sang

‘rice’ ‘shade’ ‘kitchen’

েয়া�/yot + ৈচ/chei � েয়া�ৈচ/yotchei

‘iron’ ‘stick’ ‘iron rod’

2. noun + verb root ���� noun

 ৱা/waa + হং/hang � ৱাহং/waa-hang

 ‘word’ ‘ask’ ‘question’

 েখাং/khong + চ�/chat � েখাংচ�/khong-chat

 ‘leg’ ‘go’ ‘trip’

3. noun + augmentative ���� noun

 য়ুম/yum + চাও/chaw � য়ুমজাও/yum-jaw

 ‘house’ ‘big’ ‘big house’

 উ/u + চাও/chaw � উজাও/u-jaw

 ‘tree’ ‘big’ ‘big tree’

73

4. noun + nutive ���� noun

ষন/san + নাও/naw � ষননাও/san-naw

‘cow’ ‘small’ ‘calf’

েথাং/thong + নাও/naw � েথাংনাও/ thong-naw

‘door’ ‘small’ ‘window’

5. noun + adjective ���� noun

উ/u + অশাংবা/asaangba � উশাং/u-saang

‘tree’ ‘ long’ ‘long tree’

িফ/fi + অেঙৗবা/angouba � িফেঙৗ/fi-ngou

‘cloth’ ‘white’ ‘white cloth’

6.2.3 Derivation

Derivation is a morphological process of forming a new word from an

existing word by addition of derivational affixes and the word category of the

existing word changes to another category. In Manipuri, there are cases of

derivation of nouns from verbs by the addition of the derivative suffix “বা / baa”

or “পা / paa” to the verb root directly.

 verb root + baa ���� verbal noun

 েচন/chen + বা/baa � েচনবা/chen-ba ‘running’

 চ�/chat + পা/paa � চ�পা/chat-paa ‘walking’

 চা/chaa + বা /baa � চাবা/chaa-baa ‘eating’

74

Computational Model of the above rule can be written as:

if (word.tag.startsWith (“VR”) && word.endsWith (“baa”))

 {

 word.tag.set (“MJ”)

}

6.3 Morpheme Segmentation in Manipuri

 It is generally agreed among the researchers that morpheme segmentation

is a necessary first step in agglutinative languages like Malayalam, Tamil,

Basque, Finnish and Manipuri etc. Most of the words in Manipuri are formed by

the morphological processes called affixation, compounding and derivation.

Therefore, it will almost certainly have to segment the sequence of characters in

the word into morphemes. This is not a trivial task. Although certain simple

cases look uncomplicated:

 চ�িল/ chatli � চ�/ chat [VR] + িল/li [PRG] ‘going’

 উেচকিশং/uchek � উেচক/uchek [NC] + িশং/sing [PL] ‘birds’

The segmentation cannot be done by spotting a familiar affix and detaching it –

consider the following examples:

 ঈিশং/ eesing � ঈ/ee [NC] + িশং/sing [PL]

Here, the word ঈিশং/eesing is water in English, it is the valid Manipuri word

having its own POS as Common Noun (NC). But it is wrongly segmented in the

above example.

75

চ�পVী/chatpdagee � চ�/cat [VR] + প/pa [NMZ] + দ/da [LOC] + গী/gee [GEN]

Similarly, the above example is also wrong segmentation process though ‘chat’,

‘pa’, ‘da’ and ‘gi’ all are the suffixes. It should be segmented as shown below:

 চ�পVী/chatpadagee � চ�পা/chatpaa [NV] + দগী/dagee [ABL]

Therefore, many linguistics rules are applied for handling such kind of ambiguity

issues facing in the language.

A further complication for the segmentation process is the fact that minor

alterations in spelling often occur at the boundaries between morphemes. For

example:

চ�পগী/chatpagee � চ�পা/chatpaa + গী/gee ‘to go’

ফFগী/fambagee � ফমবা/fambaa + গী/gee ‘to seat’

There are lots of long words formed by affixation which is eagerly needed to

segment into morphemes. For example:

চ�লুরবিন � চ� লু র ব িন

catlurabani � cat lu ra ba ni ‘has been gone’

েতৗহনজরমগদবিনেকা � েতৗ হন জ রম গ দ ব িন েকা

touhanjaramgadabaniko � tou han ja ram ga da ba ni ko

‘I could cause him to do’

In Manipuri, it is especially necessary to apply different linguistics rules to

overcome the wrong segmentation of morphemes. There are many stemming

algorithms viz; affix removal stemming algorithms, statistical stemming

algorithms and mixed stemming algorithms which are applied in morpheme

segmentation process. Among them affix removal stemming algorithms are more

suitable for an agglutinating language like Manipuri.

76

6.3.1 Affix Removal Stemming Algorithms

 The theory of affix removal stemming algorithm is to remove the

endings of the word keeping first n letters i.e. to shorten a word up to nth

character and remove the rest. In this method words shorter than n are kept as it

is. The chances of over stemming increase when the word length is small.

Different affix removal stemming algorithms are discussed below.

6.3.1.1 Lovins Stemming Algorithm

This was the first popular and effective stemmer proposed by Julie Beth

Lovins of Massachusetts Institute of Technology in 1968. It performs a look up

on a table of 294 endings, 29 conditions and 35 transformation rules, which have

been arranged on a longest match principle [54]. The Lovins stemmer removes

the longest suffix from a word. Once the ending is removed, the word is recoded

using a different table that makes various adjustments to convert these stems into

valid words. It always removes a maximum of one suffix from a word, due to its

nature as single pass algorithm. The advantages and disadvantages of this

algorithm are given in the table below [46]:

Table 6.3: Advantages and disadvantages of Lovins Stemmer

Advantages Disadvantages

1. Fast – single pass algorithm.

2. Handles removal of double letters
in words like ‘getting’ being
transformed to ‘get’.

3. Handles many irregular plurals like
– mouse and mice etc.

1. Time and data consuming.

2. Not all suffixes available

3. Not very reliable and frequently fails
to form words from the stems.

4. Dependent on the technical
vocabulary being used by the author.

77

6.3.1.2 Porter Stemming Algorithm

 Porter’s algorithm is most popular and widely used for stemming English

that has repeatedly shown to be empirically very effective [61]. The original

algorithm consists of 5 phases of word reduction. Each phase has a set of rules

written beneath each other, among which only one is obeyed. The rules for

removing a suffix will be given in the form

(condition) S1 → S2

This means that if a word ends with the suffix S1 and the stem before S1

satisfies the given condition, S1 is replaced by S2. The condition is usually given

in terms of m, e.g;

(m>1) EMENT →

Here S1 is ‘EMENT’ and S2 is null. This would map REPLACEMENT to

REPLAC, since REPLAC is a word part for which m=2 [50].

The ‘condition’ part may also contain the following:

*S – the stem ends with S (and similarly for the other letters).

v- the stem contains a vowel.

*d – the stem ends with a double consonant (e.g. –TT, -SS).

*o – the stem ends with cvc, where the second c is not W, X or Y (e.g. –WILL, -

HOP)

(*d and not (*L or *S or *Z))

tests for a stem ending with a double consonant other than L, S or Z [36]. Dr.

Porter himself has suggested several improvements to the original algorithm. The

suggested changes are:

i. Terminating ‘y’ changed to ‘i’ seldom occurrence.

ii. Suffix ‘us’ does not lose its ‘s’.

iii. Removal of additional suffixes, including suffix ‘ly’.

78

iv. Add step 0 to handle apostrophe.

v. A small list of exceptional forms is included.

Although, these changes do not make the algorithm very extensive,

however, failed to improve the performance and minimize the errors to great

extend. As shown in table 2, the accuracy of correctly stemmed words

increased only from 31.9% to 34.76% [61]. The advantages and limitations of

this algorithm are given in the table below [46]:

Table 6.4: Advantages and limitations of Porter Stemmer

Advantages Limitations

1. Produces the best output as
compared to other stemmers.

2. Less error rate.

3. Compared to Lovins it’s a light
stemmer.

4. The Snowball stemmer framework
designed by Porter is language
independent approach to stemming.

1. The stems produced are not always

real words.

2. It has at least five steps and sixty

rules and hence is time consuming.

6.3.1.3 Dawson Stemming Algorithm

 The Dawson Stemmer was developed by J.L. Dawson of the Literary and

Linguistics Computing Centre at Cambridge University in the year 1974. It is an

extension of Lovins approach except that it has much more comprehensive list of

about 1200 suffixes. Like Lovins, it is also a single-pass context-sensitive suffix

removal stemmer. The main objective of the stemmer was to refine the rule

sets and techniques originally proposed in Lovins stemmer and to correct any

basic errors that exist. It has two phases.

79

Phase I: All plurals and combinations of the simple suffixes are included. This

increases the size of the ending list to approximately five hundred.

Phase II: The Dawson stemmer has employ the completion principle in which

any suffix contained within the ending list is completed by including all

variants, flexions and combinations in the ending list. This increased the

ending list once more to approximately one thousand two hundred terms.

The Dawson stemmer applies the technique of partial matching

which attempts to match stems that are equal within certain limits. The

advantages and disadvantages of this algorithm are given in the table below [46]:

Table 6.5: Advantages and disadvantages of Dawson Stemmer

Advantages Disadvantages

1. Covers more suffixes than Lovins.

2. Fast in execution.

1. Very complex.

2. Lacks a standard implementation.

6.3.1.4 Paice/Husk Stemming Algorithm

 The Paice/Husk Stemmer was developed by Chris Paice at Lancaster

University in the late 1980s and was originally implemented with assistance from

Gareth Husk. It is a simple iterative Stemmer – that is to say, it removes the

endings from a word in an indefinite number of steps. The Stemmer uses a

separate rule file, which is first read into an array or list. This file is divided into

a series of sections, each section corresponding to a letter of the alphabet. The

section for a given letter, say "e", contains the rules for all endings ending with

"e", the sections being ordered alphabetically. An index can thus be built, leading

from the last letter of the word to be stemmed to the first rule for that letter.

80

When a word is to be processed, the stemmer takes its last letter and uses the

index to find the first rule for that letter. The rule is examined, and is accepted if:

• It specifies an ending which matches the last letters of the word.

• Any special conditions for that rule are satisfied (e.g, the so-called 'intact'

condition, which ensures that the rule is only fired if no other rules have

yet been applied to the word).

• Application of the rule would not result in a stem shorter than a specified

length or without a vowel.

If a rule is accepted then it is applied to the word. If it is not accepted, the rule

index is incremented by one and the next rule is tried. However, if the first letter

of the next rule does not match with the last letter of the word, this implies that

no ending can be removed, and so the process terminates.

When a rule is applied to a word, this usually means that the ending of the

word is removed or replaced. For example, the rule e1> { -e - }.

It means, if the current word/stem ends with "e" then delete 1 letter and

continue' (the curly brackets just contain a comment showing the rule in another

form). So this is a simple 'e-removal' rule, which for example would convert

"estate" to "estat". After applying this rule, the new final letter (now "t") would

be taken and used to access a different section of the rule table. If, however, the

final symbol had been "." instead of "> ", the process would have terminated, and

"estat" would have been returned at once. Suppose now that the rule had said:

 e1i> { -e -i }

81

In this case, the "e" would have been removed and then replaced by the

letter "i" – giving, in the present case, "estati".

Once a rule has been found to match, it is not applied at once, but must

first be checked to confirm that it would leave an acceptable stem. For example,

it would not be sensible to apply the 'e-removal' rule to the word "me", since the

remaining stem would be too short - and would not even contain a vowel [41].

The advantages and disadvantages of this algorithm are given in the table below

[46]:

Table 6.6: Advantages and limitations of Paice/Husk Stemmer

Advantages Disadvantages

1. Simple form.

2. Each iteration takes care of
deletion and replacement.

1. Heavy algorithm.

2. Over stemming may occur.

6.3.2 The Proposed Affix Stripping Algorithm for Manipuri

 Before discussing the proposed model, it can be noted that most of the

Manipuri words are formed by attaching a prefix which always stand for an

independent meaningful word with a different POS category, so it is not required

to separate the prefix. So the model gives emphasis on suffix stripping technique.

In this model, a list of all the 132 suffixes of Manipuri as mentioned in

the Table 6.2 and a lexicon containing morpheme and its POS category are

prepared. Many linguistics rules i.e. orthographic rules, disambiguation rules and

other morphological rules are applied to segment the word into morphemes with

an accuracy rate.

82

The architecture of the proposed model is as follows:

Figure 6.1 Architecture of proposed morpheme segmenter

The step by step procedure of the proposed model is given below:

Step I: Enter the word.

Step II: Check whether the entered word is availability in the lexicon.

Step III: If the word is found in the lexicon then the entered word itself will

be the output. Because the lexicon contains only the morpheme,

root word and the valid word which has its own POS category.

Input a word

Is the word in
lexicon?

Segment the suffixes starting
from right until the valid word

having its own POS or root

word is found

Segmented Word

Stop

Linguistics

Rules

Yes

No

Start

Lexicon

83

Step IV: If the entered word is not found in the lexicon then a greedy

search routine walks through the word trying to find the

morpheme starting from the right side of the entered word that

matches a suffix in the suffix list. When it finds the suffix, it will

stop searching and inserted a space between the suffix and the

remaining word. Step I, II, III and IV will be repeated for the

remaining word until and unless the valid word or morpheme or

root word is found.

Step V: The segmented word is displayed as output.

6.3.3 Experimental Results and Discussions

By applying the above algorithm, a morpheme segmenter tool is

developed. One thousand five hundred individual words are tested and attain a

good performance of accuracy. In order to measure the performance of the

system, an evaluation set of manually segmented words is used. Accuracy

percentage of the segmenter is calculated using the simple formula given below:

Correctly segmented words
Accuracy Percentage = X 100

No. of words in evaluation set

Results generated by applying different nos. of rules to a standard test of 1500

words are given in the table below:

Table 6.7: Segmentation experimental Results

No. of

rules

applied

Size of

Lexicon (in

words)

No. of

Words

in

evaluation

set

No. of

correctly

segmented

words

Accuracy

Percentage

%

0 200 1500 1000 66%

10 200 1500 1100 73%

20 200 1500 1250 83%

35 200 1500 1450 96%

84

It gives the accuracy of 96% and it is clear that accuracy percentage is increased

with the increment of the number of linguistics rules applied. The screenshot

view of the Manipuri Morpheme Segmenter tool is shown below:

Figure 6.2 Manipuri Morpheme Segmenter

6.4 Chapter Summary

 In this chapter, general definition of computational morphology is

discussed. It then gives a brief description on roots and affixes of Manipuri

clearly. Three major word formation processes viz., Affixation, Compounding

and Derivation are discussed with examples. It also explains different linguistics

rules which help to handle the word segmentation issues commonly faced in

Manipuri. Again this chapter discusses different algorithms of affix stripping and

proposed a new affix stripping algorithm. A morpheme segmenter tool is

developed by applying the proposed algorithm. Further, the chapter presents

some experimental results.

