CENTRAL LIBRARY N.C.COLLEGE

2019/TDC/EVEN/CHMDSC/ CHMGEC-201T/071

TDC (CBCS) Even Semester Exam., 2019

CHEMISTRY

(2nd Semester)

Course No.: CHMDSC/CHMGEC-201T

(Chemical Energetics, Equilibria and Functional Organic Chemistry)

<u>Full Marks: 50</u> Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

(Physical Chemistry)

UNIT--I

- **1.** Answer any *three* questions from the following: 1×3=3
 - (a) What is standard enthalpy of formation?
 - (b) How does enthalpy vary with temperature?
 - (c) Define resonance energy.
 - (d) Give two examples of extensive property.

J9**/2193** (Turn Over)

(2)

2.	Answe	er either (a) or (b) from the following:	2			
	(a) Write the mathematical statement of first law of thermodynamics.					
	(b) W	hat is integral enthalpy of solution?				
3.	Answe	er either (a) or (b) from the following:	5			
	(a) ((i) Explain the terms 'intensive property' and 'isolated system'.	2			
	(ii) Calculate ΔH° for the reaction				
		$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$				
	1010	given that $\Delta H_{\rm f}^{\circ}$ for ${\rm CO_2(g)}$, ${\rm CO(g)}$, ${\rm H_2O(g)}$ and ${\rm H_2(g)}$ are -393·5 kJ/mol, -111·3 kJ/mol, -241·8 kJ/mol and -542·6 kJ/mol respectively.	3			
	(b)	(i) Explain the terms 'adiabatic process' and 'intensive property'.	2			
		(ii) Calculate enthalpy of formation of CH ₄ from the following thermochemical data:	3			
		C (graphite) + $O_2(g) \rightarrow CO_2(g)$; $\Delta H = -393.5 \text{ kJ}$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$; $\Delta H = -571.8 \text{ kJ}$ $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$; $\Delta H = -890.3 \text{ kJ}$				
10.40		(Continu	ed)			

4.	Answer	any	three	questions	from	the
	following	100		income.		1×3=3

- (a) What is the sign of ΔG° for spontaneous reaction?
- (b) Give one example each of strong and weak electrolytes.
- (c) What is buffer solution?
- (d) What do you mean by solubility product?
- 5. Answer either (a) or (b) from the following:
 - (a) What are the differences between ΔG and ΔG° ?
 - (b) Distinguish between solubility product and ionic product of a sparingly soluble salt.
- 6. Answer either (a) or (b) from the following: 5
 - (a) (i) Give one example each of acidic and basic buffer solutions.
 - (ii) State and explain Le Chatelier's principle.

J9**/2193**

(Turn Over)

2

- (b) (i) Write a note on applications of solubility product.
 - (ii) Establish the relationship between K_P and K_C for the reaction

$$rR + sS \rightleftharpoons xX + yY$$
 3

2

SECTION-B

(Organic Chemistry)

UNIT-III

- 7. Answer any three questions from the following: 1×3=3
 - (a) What is nucleophilic reaction?
 - (b) Arrange the following molecules in ascending order of reactivity:

(c) Complete the following reaction:

$$C_2H_5Br + NaOH \rightarrow ? + ?$$

- (d) Which one of the following reactions would you expect to take place more rapidly?
 - (i) $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3C OH + HBr$
 - (ii) $(CH_3)_3CBr + CH_3OH \rightarrow (CH_3)_3C OCH_3 + HBr$

8. Answer either (a) or (b) from the following:

(a) Propose the mechanism for the following reaction:

$$CH_3$$
— CH_2 — $Br + KOH(alc.) \rightarrow$
 $CH_2 = CH_2 + KBr + H_2O$

(b) Name and complete the following reaction:

9. Answer either (a) or (b) from the following:

- (a) Write the $S_N 1$ and $S_N 2$ mechanism for the following reactions: $2\frac{1}{2} \times 2=5$
 - (i) $(CH_3)_3CBr + OH \longrightarrow (CH_3)_3COH + Br$
 - (ii) $CH_3Br + OH \longrightarrow CH_3OH + Br$
- (b) Complete the following reactions: $1 \times 5 = 5$

(i)
$$Cl$$
 + CH_3COCl AlCl₃ (anhy.) ?

- (ii) CH_3 — CH_2 — $OH + PCl_5$ \longrightarrow ?
- (iii) $CH_3-CH=CH_2+HBr \longrightarrow ?$

(7)

(iv) CH_3 — CH_2 — CH_3 + C_2H_5O \longrightarrow ?

(v)
$$\bigcirc$$
 + Br₂ $\xrightarrow{\text{FeBr}_3}$?

UNIT-IV

- **10.** Answer any *three* questions from the following: 1×3=3
 - (a) Give one example of 3°-alcohol and write its IUPAC name.
 - (b) How is CH₃CH₂OH prepared from CH₃CHO?
 - (c) Why are alcohols soluble in water?
 - (d) What is Lucas reagent?
- 11. Answer either (a) or (b) from the following: 2
 - (a) What is esterification? Give one example.
 - (b) How is benzene prepared by cumene hydroperoxide method?

2.	Answer either (a) or (b) from the following:				
	(a)	(i)	Write the general method of preparation of 1°, 2° and 3° alcohols.	3	
		(ii)	Write the reactions involved in Reimer-Tiemann reaction.	2	
	(b)	(i)	Write the chemical tests to distinguish between the following pairs:	3	
			$(CH_3)_3COH$ and $(CH_3)_2CHOH$; alcohol and phenol; CH_3COCH_3 and CH_3CH_2CHO .		
-		(ii)	Explain the necessary condition for a carbonyl compound to show Cannizzaro's reaction with suitable		

UNIT-V.

- **13.** Answer any *three* questions from the following: 1×3=3
 - (a) What is chirality?

example.

- (b) Write one example each of monosaccharide and polysaccharide.
- (c) Why is glucose a reducing sugar?
- (d) What are meso-compounds?

J9/2193

(Continued)

J9**/2193**

(Turn Over)

(8)

- 14. Answer either (a) or (b) from the following: 2
 - (a) Which of the following compounds exhibit enantiomerism?

 CH_2 (OH)CH(OH)CHO, CH_2 NH $_2$ COOH, $(CH_3)_2$ CHCHCICH $_3$, CH_3 CH(OH)CH $_3$

- (b) Draw the cyclic and open-chain structures of glucose.
- 15. Answer either (a) or (b) from the following: 5
 - (a) (i) Assign E- and Z-configurations for the following: 1×2=2

ICH=CBrCl, CH3ClC=CBrH

- (ii) What is mutarotation? Why does
 D-glucose show the phenomenon of
 mutarotation? 1+2=3
- (b) (i) Assign R- and S-configurations for the following compounds: 1×2=2

(ii) Discuss the structure of maltose.

2019/TDC/EVEN/CHMDSC/ CHMGEC-201T/071

3