CENTRAL LIBRARY N.C.COLLEGE

2022/TDC(CBCS)/EVEN/SEM/ COMHCC-402T/141

TDC (CBCS) Even Semester Exam., 2022

COMMERCE

(Honours)

(4th Semester)

Course No.: COMHCC-402T

(Business Mathematics)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten questions of the following: 2×10=20

1. If

$$A = \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -1 \\ 5 & 2 \end{bmatrix}$$

find 2A + 3B

2. Define diagonal matrix and null matrix.

(Turn Over)

3. If

$$A = \begin{bmatrix} 0 & 0 \\ 5 & 0 \end{bmatrix}$$

show that $A^2 = 0$.

- **4.** If $f(x) = x^2$, find f(f(3)).
- 5. Find the value of

$$\lim_{x \to 2} \frac{x^2 + 2x - 2}{2x + 3}$$

- **6.** Distinguish between $\lim_{x\to a} f(x)$ and f(a).
- 7. If $u = x^2 + y$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
- 8. State Euler's theorem.
- **9.** Find the total differential of $u = x^2 + 2y^2$.
- 10. Define annuity.
- 11. Calculate the SI on ₹ 5,000 for 2 years at the rate of 4% p.a.

(Continued)

(3)

- 12. Calculate compound interest of ₹ 2,000 at 5% p.a. for 3 years.
- **13.** What is meant by linear programming problem?
- 14. Write the two assumptions of a linear programming problem.
- 15. What are slack and surplus variables?

SECTION-B

Answer any five questions of the following: 10×5=50

16. (a) Find adj A where

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{bmatrix}$$

5

(b) If

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

show that $A^2 - 4A - 5I = 0$.

5

22J**/1260**

(Turn Over)

17. (a) Find the inverse of the following matrix: 5

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & -2 & 3 \\ 0 & 1 & -1 \end{bmatrix}$$

(b) If

18. (a)

$$A = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & x \\ 0 & -\frac{1}{2} \end{bmatrix}$$

find the value of x if AB = BA.

(i) Evaluate the following: 3

5

2

2

(Continued)

$$\lim_{x\to 3} \frac{x^2 - 5x + 6}{x - 3}$$

- (ii) When is a function said to be continuous at a point?
- (b) (i) If $f(x) = \begin{cases} 4x + 3 & \text{for } x \neq 4 \\ 3x + 7 & \text{for } x = 4 \end{cases}$

find whether the function is continuous at x = 4.

(ii) Find $\frac{dy}{dx}$, $y = \log(ax + b)$.

19. (a) Find $\frac{dy}{dx}$ (any two):

21/2×2=5

- (i) $y = (x^2 + 5x)^3$
- (ii) $2x^2 + 5xy + 3y^2 = 1$
- (iii) $y = e^x + \log x$
- (b) (i) Find the maximum and minimum values of $2x^3 15x^2 + 36x + 10$.
 - (ii) Given the total cost function $C = Q^3 2Q^2 + 3Q + 35$, find the marginal cost when Q = 3. 3+2=5
- **20.** (a) If

$$u = \log\left(\frac{x^2 + y^2}{x + y}\right)$$

show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$.

- (b) (i) Verify Euler's theorem for the function $u = ax^2 + by^2 + 2hxy$.
 - (ii) Find the total derivative of u with respect to t, $u = x^2y^2$, $x = t^3$, $y = t^3 + 3$.

22J**/1260**

(Turn Over)

4

3

3

21. (a) Evaluate the following (any two): $3\times2=6$

(i)
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 dx$$

(ii)
$$\int x^2 e^x dx$$

(iii)
$$\int (x^3 + e^x + 10\log x) dx$$

- (b) The marginal cost function of a firm is $2+3e^x$, where x is the output. Find the average total cost function, if the fixed cost is \checkmark 500.
- 22. (a) In what time will a sum of money double itself at 5% p.a. CI?
 - (b) What sum will buy an annuity of ₹ 1,050 payable for 4 years, the rate of interest being 3½% p.a. compound interest?
 - (c) At SI, a principal amounts to ₹ 2,800 in 2 years and ₹ 3,250 in 5 years. Find the principal and rate of interest.
- 23. (a) What sum will buy an annuity of 71,050 payable for 4 years, the rate of interest being $3\frac{1}{2}\%$ p.a. compound interest.
 - (b) In how many years the simple interest on ₹800 at 3% p.a. will be ₹72? 5

- **24.** (a) Discuss briefly the applications of linear programming in commerce.
 - (b) Solve the following LPP using graphical method:

Maximize
$$Z = 6x_1 + 8x_2$$

subject to

$$5x_1 + 10x_2 \le 60$$

$$4x_1 + 4x_2 \le 40$$

$$x_1, x_2 \ge 0$$

4

6

б

25. (a) Use simplex method to solve the LPP:

$$Maximize Z = 5x_1 + 6x_2x_3$$

subject to

$$9x_1 + 3x_2 - 2x_3 \le 5$$

$$4x_1 + 2x_2 - x_3 \le 2$$

$$x_1 - 4x_2 + x_3 \le 3$$

$$x_1, x_2, x_3 \ge 0$$

Explain the terms: 2+2=4

- (i) Basic feasible solution
- (ii) Optimal solution

* * *

22J—950**/1260**

3

3

(Continued)

2022/TDC(CBCS)/EVEN/SEM/ COMHCC-402T/141