CENTRAL LIBRARY N.C.COLLEGE

2022/TDC (CBCS)/EVEN/SET// PHSHCC-602T/1 19

TDC (CBCS) Even Semester Exam., 2022

PHYSICS

(Honours)

(6th Semester)

Course No.: PHSHCC-602T

(Statistical Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: 2×1 = 20

- 1. Define macrostate with example.
- 2. Give the elementary concept of ensemble.
- 3. What do you understand by entropy?

(Turn Over)

(2)

- **4.** What do you understand by blackbody radiation?
- 5. State Stefan-Boltzmann law.
- 6. Discuss Saha's ionization formula.
- 7. State Planck's quantum postulates.
- 8. Briefly explain Wien's law of energy distribution.
- **9.** Explain briefly Planck's law of blackbody radiation.
- 10. Explain photon gas in brief.
- 11. Write a brief note on Bose-Einstein condensation.
- **12.** Briefly outline the properties of liquid helium.
- 13. Mention two basic assumptions of Fermi-Dirac statistics.
- 14. Write a brief note on Fermi energy.
- 15. What are white dwarf stars?

SECTION—B

Answer any five of the following questions: $6\times5=30$

- **16.** State and prove the law of equipartition of energy. 1+5=6
- 17. Deduce the relation between entropy and thermodynamic probability.
- **18.** State and prove Kirchhoff's law of radiation. 1+5=6
- **19.** Discuss about Wien's displacement law and Rayleigh-Jeans law. 3+3=6
- **20.** Discuss the spectral distribution of blackbody radiation.
- 21. Starting from Planck's radiation law, deduce
 (a) Wien's energy distribution law and
 (b) Stefan-Boltzmann law. 3+3=6
- 22. What distribution would you use for the study of photon gas? Using quantum-statistical method, derive Planck's radiation law for the spectral distribution of energy in blackbody radiation.

 1+5=6

CENTRAL LIBRARY N.C.COLLEGE

(4)

23	Derive an expression for the most probable
	distribution of particles of a system obeying
	Bose-Einstein statistics.

- Obtain an expression for the probability distribution of particles obeying Fermi-Dirac statistics.
- (a) Write a brief note on Fermi surface.

 (b) Calculate the Fermi energy at 0 K of metallic silver containing one free electron per atom. The density of silver is 10.5 g/cm³ and its atomic weight

is 108.

4