CENTRAL LIBRARY N.C.COLLEGE 2022/TDC (CBCS)/EVEN/SEM/ PHSHCC-402T/114

TDC (CBCS) Even Semester Exam., 2022

PHYSICS

(Honours)

(4th Semester)

Course No.: PHSHCC-402T

(Elements of Modern Physics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions:

2×10=20

- 1. State Planck's quantum hypothesis.
- 2. What is quantum theory of light?
- 3. What is matter wave? Whose variations give rise to matter wave? 1+1=2
- State Heisenberg uncertainty principle.
 Mention its mathematical expression. 1+1=2

22J**/1203** (Turn Over)

5.	Does the uncertainty in quantum mechanics						
	arise	because	of	some	errors	in	
	measurements? Justify your answer.						

- **6.** What is the uncertainty in momentum for a single monochromatic wave?
- 7. What do you mean by stationary state?
- **8.** What is the importance of normalizing a wave function?
- 9. Can the wave function $\psi(n) = A \sin(kn \omega t)$ represent a free particle? Justify your answer.
- **10.** What is called zero point energy of a particle in one-dimensional box?
- 11. What is quantum mechanical tunnel effect?
- **12.** What do you mean by dynamical evolution of a quantum state?
- 13. Write the full form of LASER. Mention some of its uses. 1+1=2
- **14.** Why can fusion take place only at very high temperature?
- **15.** Define mean life and half life in the context of radioactivity. 1+1=2

SECTION-B

Answer any five of the following questions: 6×5=30

16. Define phase velocity and group velocity. Show that if phase velocity is constant, then group velocity is equal to the phase velocity.

2+4=6

2

- 17. Explain Davisson and Germer experiment in detail with necessary diagrams.
- 18. (a) How does the concept of Bohr orbit violate the principle of uncertainty?
 - (b) Using uncertainty relation, show that electrons cannot reside within a nucleus.

19. (a) Obtain the expression of ground state energy of hydrogen atom using uncertainty relation.

(b) If the uncertainty in the location of a particle is equal to the de Broglie wavelength, then find its uncertainty in velocity.

22J/1203

		•	
20.	(a)	What are the fundamental postulates of quantum mechanics?	3
	(b)	Normalize the wave function	
		$\psi(x) = Ae^{-\alpha x^2}$	
		where A and α are constants.	3
21.	(a)	Deduce the orthogonality condition of wave functions.	3
	(b)	Show that the probability current density for the wave function	
		$\psi(x,t) = Ae^{i\phi(x,t)}$ is $A^2 \frac{\hbar}{m} \frac{\partial \phi}{\partial x}$	
,		where A is a constant.	3
22.	(a)	Why should wave function be single-valued everywhere?	2
	(b)	Deduce the one-dimensional Schrödinger equation for a particle of mass m in time-dependent form.	4
23.	(a)	A particle cannot exist in one- dimensional infinitely rigid box if its energy is zero. Justify.	3
	(b)	For a potential step, write down the two Schrödinger equations corresponding to the regions $x < 0$ and $x > 0$ for the case $E > V_0$. Also write the boundary conditions at the junction between two regions.	.=3

4.	(a)	What is radioactivity?	1					
	(b)	State the radioactive decay laws. Using these laws, deduce the equation						
$N = N_0 e^{-\lambda t}$								
		where symbols have their own meanings. 2+3	3=5					
5.	(a)	Distinguish between nuclear fission and nuclear fusion.	3					
	(b)	Mention three differences between spontaneous emission and stimulated emission.	3					
,	,	***						