### CENTRAL LIBRARY N.C.COLLEGE

## 2022/TDC (CBCS)/EVEN/SEM/ MTMHCC-602T/265

#### TDC (CBCS) Even Semester Exam., 2022

#### **MATHEMATICS**

(Honours)

(6th Semester)

Course No.: MTMHCC-602T

(Linear Algebra)

Full Marks: 70
Pass Marks: 28

Time : 3 hours

The figures in the margin indicate full marks for the questions

#### SECTION—A

Answer any ten of the following questions: 2×10=20

1. Let V(F) be a vector space and 0 be the zero vector of V. Then show that

 $\alpha \nu = 0 \Rightarrow \alpha = 0$  or  $\nu = 0, \forall \alpha \in F \text{ and } \forall \nu \in V$ 

# (2)

2. Is the set

 $\{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\} \subseteq \mathbb{R}^3$ 

linearly independent over R? Justify your answer.

- 3. Define basis of a vector space and give an example.
- **4.** Is  $T: \mathbb{R}^2 \to \mathbb{R}^3$  defined as

T(x, y) = (x+3, 2y, x+y)

a linear transformation? Justify your answer.

- 5. State Sylvester's law of nullity.
- 6. The mapping  $T: V_2(R) \rightarrow V_3(R)$  defined as T(a, b) = (a+b, a-b, b)

is a linear transformation. Find the null space of T.

- 7. If  $T: U \to V$  is a homomorphism, then prove that T(0) = 0' where 0 and 0' are the zero vectors of U and V respectively.
- 8. Define homomorphism of a vector space and give an example.

9. Is the linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by

 $T(x, y) = (x+2y, 2x+4y) \quad \forall (x, y) \in \mathbb{R}^2$  an isomorphism? Justify your answer.

- 10. Let T be an invertible linear operator on a finite-dimensional vector space V over a field F. Prove that  $\lambda \in F$  is a characteristic root of T if and only if  $\lambda^{-1}$  is a characteristic root of  $T^{-1}$ .
- 11. Show that the eigenvalues of a diagonal matrix are its diagonal elements.
- **12.** Prove that eigenvalues of unitary matrix are of unit modulus.
- 13. In an inner product space V(F), prove that  $||\alpha x|| = |\alpha| \, ||x||$
- 14. When are two vectors said to be orthonormal in an inner product space?
- **15.** Prove that an orthonormal set of vectors in an inner product space V is linearly independent.

### (4)

#### SECTION—B

Answer any five of the following questions: 10×5=50

- 16. (a) Prove that union of two subspaces is a subspace if and only if one of them contains the other.
  - (b) Show that every linearly independent subset of a finitely generated vector space is a basis or can be extended to form a basis.
- 17. (a) If  $W_1$  and  $W_2$  are two subspaces of a finite-dimensional vector space V(F), then prove that

 $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$ 

- (b) If  $W_1$  and  $W_2$  be two subspaces of a vector space V(F), then show that  $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$  is a subspace of V(F) spanned by  $W_1 \cup W_2$ .
- 18. (a) If V is a vector space and  $T: V \to V$  is a linear operator, then prove that the following are equivalent:

  (i) Range  $(T) \cap \ker(T) = \{0\}$ 
  - (ii)  $T(Tx) = 0 \Rightarrow Tx = 0$

(b) Let T be the linear operator on  $R^2$  defined by T(x, y) = (4x - 2y, 2x + y). Compute the matrix T relative to the basis  $B = \{(1, 1), (-1, 0)\}$ .

5

5

7

3

2

19. (a) Prove that there exists a linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^3$  such that T(1, 1) = (1, 0, 2) and T(2, 3) = (1, -1, 4) What is T(8, 11)?

(b) Find range, rank, kernel and nullity of the linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by T(x, y) = (x + y, x).

20. (a) Prove that two finite-dimensional vector spaces over the same field are isomorphic if and only if they are of the same dimension.

(b) Prove that isomorphism is an equivalence relation.

- 21. (a) If  $T: U \to V$  is an isomorphism of the vector space U into V, then prove that the set of vectors  $\{T(u_1), T(u_2), \dots, T(u_r)\}$  is linearly independent if and only if the set  $\{u_1, u_2, \dots, u_r\}$  is linearly independent. Give example to show that the same does not hold if T is not isomorphism. 6+2=8
  - (b) Define isomorphism of a vector space and give an example.

5

5

5

5

22J/1390

### (6)

- 22. (a) Let T be a linear operator on V, where V is a vector space over a field F. If  $v_1, v_2, \dots, v_n$  are non-zero eigenvectors of T belonging to distinct eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_n$ , then show that  $v_1, v_2, \dots, v_n$  are linearly independent.
  - (b) Show that eigenvalues of

$$A = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$

are ±1 and the corresponding eigenvectors are

$$\begin{pmatrix} \cos \theta/2 \\ \sin \theta/2 \end{pmatrix} \text{ and } \begin{pmatrix} \sin \theta/2 \\ -\cos \theta/2 \end{pmatrix}$$
 5

- 23. (a) Let T be a linear operator on a finite-dimensional vector space V. Then prove that the following are equivalent: 7
  - (i)  $\lambda$  is a characteristic value of T
  - (ii) The operator  $T \lambda I$  is singular
  - (iii)  $|T \lambda I| = 0$
  - (b) Prove that similar matrices have the same characteristic polynomial.
- **24.** (a) If x, y are vectors in an inner product space V, then prove that

$$||x+y|| \le ||x|| + ||y||$$
 5

3

( Continued )

(b) Prove that if V is an inner product space, then  $|\langle x, y \rangle| = ||x|| ||y||$  if and only if one of x or y is a multiple of the other.

5

- 25. (a) State and prove Cauchy-Schwartz inequality in an inner product space.

  1+5=6
  - (b) If  $\{v_1, v_2, \dots, v_n\}$  is an orthonormal subset of an inner product space V, then prove that for any  $v \in V$ , the vector

$$v - \sum_{i=1}^{n} (v, v_i) v_i$$

is perpendicular to each  $v_i$ .

\*\*