CENTRAL LIBRARY N.C.COLLEGE

2022/TDC(CBCS)/EVEN/SEM/ MTMSEC-401T (A/B/C)/263

TDC (CBCS) Even Semester Exam., 2022

MATHEMATICS

(4th Semester)

Course No.: MTMSEC-401T

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

Candidates have to answer either from Option A
or Option B or Option C

OPTION—A

Course No.: MTMSEC-401T (A)

(Graph Theory)

SECTION-A

Answer any *fifteen* of the following questions: $1 \times 15 = 15$

- 1. Define a graph.
- 2. Define degree of a vertex of a graph.

(Turn Over)

(2)

- 3. What is a bipartite graph?
- **4.** What is the maximum number of edges in a simple graph with *n* vertices?
- 5. What is a tree?
- 6. What is a leaf in a tree?
- **7.** What is a spanning tree of a connected graph?
- **8.** How many edges does a tree with n vertices have?
- **9.** Define isomorphism from a graph to another graph.
- 10. What is an Eulerian circuit?
- 11. What is a Hamiltonian cycle?
- 12. Define adjacency matrix of a graph.
- 13. What is a planar graph?
- 14. Give example of a graph that is not planar.
- **15.** State the necessary and sufficient conditions for a graph to be planar.

- 16. For which n, is K_n planar?
- 17. What is the travelling salesman's problem?
- 18. What is a weighted graph?
- 19. Name an algorithm to find the shortest path from a vertex to another vertex in a weighted graph.
- 20. What is Floyd-Warshall algorithm used for?

SECTION—B

Answer any five of the following questions: $2 \times 5 = 10$

- 21. Define subgraph of a graph and illustrate it with diagrams.
- 22. Show that the sum of the degrees of the vertices of a graph is equal to twice the number of edges.
- 23. What is a bridge in a connected graph? Illustrate with a diagram.
- **24.** Draw all possible labelled trees on three vertices.
- 25. Prove that any circuit in a graph must contain a cycle.

22J**/1235**

(Turn Over)

(4)

- **26.** Write the adjacency matrix of the complete bipartite graph $K_{2,3}$.
- 27. Show that K_5 is not planar.
- 28. Show that every planar graph has at least one vertex of degree $d \le 5$.
- 29. Write the steps of Dijkstra's algorithm.
- 30. Write the steps of Floyd-Warshall algorithm.

SECTION—C

Answer any five of the following questions: 5×5=25

- **31.** Draw the graphs K_5 and $K_{3,4}$. 2+3=5
- 32. Suppose all the vertices in a graph have odd degree K. Show that the total number of edges in the graph is a multiple of K.
- 33. Show that a connected graph with n vertices is a tree if and only if it has n-1 edges.
- 34. Prove that a graph is a tree if and only if it is connected and every edge is a bridge.
- 35. Show that isomorphism is an equivalence relation on the set of all graphs.

- 36. Show that the number of walks of length 2 in any graph G is the sum of the entries of the matrix A^2 where A is the adjacency matrix of G.
- 37. Let G be a planar graph with $V \ge 3$ vertices and E edges. Show that $E \le 3V 6$.
- **38.** Let G be a connected graph with V_1 vertices and E_1 edges and let H be a subgraph with V_2 vertices and E_2 edges. Show that

$$E_2 - V_2 \leq E_1 - V_1$$

- **39.** Explain the improved version of Dijkstra's algorithm.
- **40.** Illustrate Floyd-Warshall algorithm with an example.

(6)

OPTION-B

Course No.: MTMSEC-401T (B)

(Special Function)

SECTION-A

Answer any fifteen of the following questions:

1×15=15

- 1. Write down the Legendre's polynomial of first kind of order n.
- 2. What are the roots of $P_n(x) = 0$, where $P_n(x)$ is a Legendre's polynomial of first kind?
- 3. When n is positive integer, the value of

$$\frac{1}{\pi} \int_0^{\pi} \frac{d\phi}{(x \pm \sqrt{(x^2 - 1)} \cos \phi)^{n+1}}$$

is _____

(Fill in the blank)

- **4.** Write down the Legendre's polynomial of second kind of order n.
- 5. Write down the value of

$$\int_{-1}^{1} P_m(x) P_n(x) dx$$

when m = n.

- **6.** Write the Bessel's function of first kind of order n.
- 7. Expand $J_n(x)$ in the powers of x when n = 0.
- 8. If

$$J_n(x) = \frac{x}{2n}[J_{n-1}(x) + J_{n+1}(x)]$$

express $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$.

- **9.** Define Laplace transform of a function f(x).
- 10. If $f(x) = \sinh ax$, what is L(f(x)), where L(f(x)) is Laplace transform of f(x)?
- 11. What is the inverse Laplace transform of $\frac{1}{s^2 + a^2}$?
- 12. Prove that Laplace transform of 1 is $\frac{1}{s}$, i.e., $L(1) = \frac{1}{s}$.
- 13. If L(F(t)) = f(s), then what is L(F'(t)), where (') denotes differentiation w.r.t. t?
- 14. If L(F(t)) = f(s), then what is the value of L(F''(t))?

- **15.** If L(F(t)) = f(s), then what is the value of $L\{F^n(t)\}$?
- **16.** Write down the value of $L(t^n F(t))$, if L(F(t)) = f(s).
- 17. Write down the formula for infinite Fourier sine transformation of f(x).
- 18. What is the formula for infinite Fourier transformation of f(x)?
- 19. Write Fourier cosine integral formula.
- 20. Write Fourier exponential integral formula.

SECTION-B

Answer any five of the following questions: 2×5=10

- **21.** Show that $P_n(1) = 1$.
- **22.** Prove that $P_{2m+1}(0) = 0$.
- 23. Using Rodrigue's formula, prove that

$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$

24. Prove that

$$\frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$$

- **25.** Find the Laplace transform of $\sin 2t \cdot \sin 3t$.
- **26.** Find the inverse Laplace transform of $\left(\frac{s^2 3s + 4}{s^3}\right)$
- 27. Using Laplace transformation, find L(cos2t).
- **28.** Using Laplace transformation, find $L\{\sin(nt + \alpha)\}$.
- 29. If

$$f(x) = \begin{cases} 1, & 0 < x < a \\ 0, & x \ge a \end{cases}$$

- then find Fourier cosine transformation of f(x).
- **30.** If $f(x) = 2e^{-5x} + 5e^{-2x}$, then find Fourier sine transformation of f(x).

(10)

SECTION—C

Answer any five of the following questions: $5 \times 5 = 25$

31. When n is positive integer, then prove that

$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} [x \pm \sqrt{(x^2 - 1)} \cos \theta]^n d\theta$$

Hence find P_n (cos ϕ).

32. Show that

$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} t^n P_n(x)$$

Hence find the value of P_n (-1).

33. Prove that

$$P_n(x) = \frac{1}{2^n | n|} \frac{d^n}{dx^n} (x^2 - 1)^n$$

34. Show that if n is a positive integer

$$J_{-n}(x) = (-1)^n J_n(x)$$

Also show that

$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cdot \cos x$$
 2+3=5

35. (a) Find Laplace transform of $e^{-3t}(2\cos 5t - 3\sin 5t)$

11)

(b) Find inverse Laplace transform of

$$\frac{s+2}{s^2-4s+13}$$

36. (a) Find inverse Laplace transform of

$$\frac{4s+5}{(s-1)^2(s+2)}$$

(b) Given the function

$$f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 2x, & x \ge 1 \end{cases}$$

Find L(f(x)).

37. Solve the differential equation

$$(D^2 + 9)y = \cos 2t$$
 if $u(0) = 1$, $y'(\pi/2) = -1$.

38. Solve the differential equation

$$(D^2 + n^2)x = a\sin(nt + \alpha)$$

if x(0) = 0, x'(0) = 0.

39. Using Fourier transforms, show that

$$\int_0^\infty \frac{\cos sx}{s^2 + 1} ds = \frac{\pi}{2} e^{-x} (x \ge 0)$$

40. Using Fourier integral, show that

$$e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda, \ a > 0, \ x \ge 0$$

3

OPTION—C

Course No.: MTMSEC-401T (C)

(Vector Analysis/Vector Calculus)

SECTION-A

Answer any fifteen of the following questions:

1×15=15

- 1. Determine the value of λ , for which the vectors $\vec{a} = \lambda \hat{i} 4\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \lambda \hat{j} 2\hat{k}$, are perpendicular.
- 2. What is the condition for coplanarity of three vectors?
- 3. Find the value of

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$$

- **4.** Write the vector equation of the line passing through the point $\hat{i} \hat{j} + \hat{k}$ and parallel to the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.
- 5. Define vector function of a scalar variable.

6. Let $\vec{u}(t)$ and, $\vec{v}(t)$ are differentiable vector functions of a scalar variable t. Then what is the value of $\frac{d}{dt}(\vec{u} \times \vec{v})$?

7. Prove that

$$\frac{d}{dt} \left(\vec{r} \times \frac{d\vec{r}}{dt} \right) = \vec{r} \times \frac{d^2 \vec{r}}{dt^2}$$

- **8.** What is the necessary and sufficient condition for a vector function $\vec{r} = \vec{f}(t)$ of a scalar variable t in a domain $D \subseteq R$, to have a constant magnitude?
- 9. What is the gradient of a constant function?
- 10. If $u = x^3 + 3yz^2$, then find $\vec{\nabla} u$.
- 11. Define the curl of a vector point function.
- 12. Define irrotational vector.
- 13. Write the value of

$$\int \left(\vec{r} \cdot \frac{d\vec{A}}{dt} + \vec{A} \cdot \frac{d\vec{r}}{dt} \right) dt$$

(14)

14. Write the value of

$$\int \left(2\vec{r}\cdot\frac{d\vec{r}}{dt}\right)dt$$

- **15.** If $\vec{a}(u) = u^2 \hat{i} + (u-1)\hat{j} 4\hat{k}$, then find $\int \vec{a}(u) du$.
- 16. Write the value of

$$\int \left(\vec{r} \times \frac{d^2 \vec{r}}{dt^2} \right) dt$$

- 17. State the principle of work.
- **18.** What is the principle of conservation of linear momentum?
- 19. Define kinetic energy. Is it a scalar or vector quantity?
- 20. A particle moves along the curve $x = 4\cos t$, $y = 4\sin t$, z = 6t. Find the velocity of the particle at time t = 0.

SECTION—B

- Answer any five of the following questions: $2\times5=10$
- 21. Find the perpendicular distance of the plane $\vec{r} \cdot (2\hat{i} 2\hat{j} + \hat{k}) + 6 = 0$ from the origin.

- 22. For any non-zero non-coplanar vectors \vec{a} , \vec{b} and \vec{c} , show that $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}]$
- **23.** If $\vec{a} = \hat{i} t^2 \hat{j} + t^3 \hat{k}$ and $\vec{b} = (\sin t)\hat{i} + (\cos t)\hat{j}$, then find the value of $\frac{d}{dt}(\vec{a} \cdot \vec{b})$.
- 24. Define continuity of a vector function of a scalar variable.
- **25.** Prove that curl grad $\phi = \overrightarrow{0}$.
- **26.** Prove that div curl $\vec{f} = 0$.
- 27. Evaluate

$$\int_{1}^{2} \left(\overrightarrow{r} \times \frac{d^{2}\overrightarrow{r}}{dt^{2}} \right) dt$$

where $\vec{r} = 2t^2\hat{i} + t\hat{j} - 3t^2\hat{k}$.

28. If \vec{v} be a vector function of a scalar variable t and $\frac{d\vec{v}}{dt} = e^t \hat{i} + e^{2t} \hat{j} + \hat{k}$, then find \vec{v} ; given that $\vec{v} = \hat{i} + \hat{j}$ when t = 0.

(16)

- **29.** A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 3\sin 3t$, where t is the time. Find the velocity and acceleration of the particle at any time t.
- **30.** Find the work done by the force $\overrightarrow{F} = (0, 0, -mg)$ in moving a particle of mass m from O(0, 0, 0) to A(1, 1, 1) along the curve x = t, $y = t^2$, $z = t^3$; t being a parameter.

SECTION—C

Answer any five of the following questions: 5×5=25

31. (a) Prove that

$$[\vec{a}, \vec{b}, \vec{c}]^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

- (b) Find the vector equation of the sphere whose centre is $\vec{c} = 2\hat{i} \hat{j} + \hat{k}$ and radius is 5 units.
- **32.** (a) Prove that

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

- (b) If the position vectors of the vertices of a tetrahedron are $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 4\hat{j} + 3\hat{k}$, $3\hat{i} + 2\hat{j} + 4\hat{k}$ and $4\hat{i} + 3\hat{j} + 2\hat{k}$, then find its volume.
- 33. (a) If $\vec{r} = \vec{f}(t)$ is a differentiable vector function of a scalar variable t, then write the geometrical interpretation of $\frac{d\vec{r}}{dt}$.
 - (b) Find the unit tangent vector at any point to the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$.
- 34. (a) If $\vec{r} = (a\cos t)\hat{i} + (a\sin t)\hat{j} + (at\tan\alpha)\hat{k}$, then find $\left[\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right]$.
 - (b) If $\vec{r} = (\cos t)\hat{i} + (\sin t)\hat{j}$, prove that $\frac{d\vec{r}}{dt}$ is perpendicular to \vec{r} .
 - **5.** (a) Prove that $\operatorname{curl} \overrightarrow{f} = \operatorname{grad} \operatorname{div} \overrightarrow{f} \nabla^2 \overrightarrow{f}$
 - (b) If $\phi = 2x^3y^2z^4$, then find div (grad ϕ). 2

2

2

3

2

3

- **36.** (a) If $\vec{F} = (x+y+1)\hat{i} + \hat{j} + (-x-y)\hat{k}$, then prove that $\vec{F} \cdot \text{curl } \vec{F} = 0$.
 - (b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then find $\operatorname{div}(\vec{r} \times \vec{a})$ where \vec{a} is a constant vector.
- 37. (a) If $\vec{f}(t) = t\hat{i} + (t^2 2t)\hat{j} + (3t^2 + 3t^3)\hat{k}$, then find $\int_0^1 \vec{f}(t) dt$.
 - (b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = x^2 y^2 \hat{i} + y \hat{j}$ and the curve C is $y^2 = 4x$ in the xy-plane from (0, 0) to (4, 4).
- 38. (a) Show that $\int_0^{\pi} (5\cos u\hat{i} 7\sin u\hat{j}) du = 5\hat{i} 7\hat{j}$ 2
 - (b) If $\vec{A} = 3xy\hat{i} 5z\hat{j} + 10x\hat{k}$, then evaluate $\int \vec{A} \cdot d\vec{r}$ along the curve C given by $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- **39.** (a) A particle moves according to the law $\vec{r} = (\cos t)\hat{i} + (\sin t)\hat{j} + t^2\hat{k}$. Find the magnitude of the tangential and the normal components of acceleration.

- (b) The acceleration of a particle at any time t is $e^t\hat{i} + e^{2t}\hat{j} + \hat{k}$. Find the velocity at time t, if the initial velocity be $\hat{i} + \frac{1}{2}\hat{j}$.
- **40.** (a) Find the work done by the force $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$ in moving a particle in the xy-plane from (0, 0) to (1, 1) along the parabola $y^2 = x$.
 - (b) A particle moves along the curve $x=2t^2$, $y=t^2-4t$, z=3t-5. Find the components of the velocity in the direction $\hat{i}-3\hat{j}+2\hat{k}$ at time t=1.

22J/1235

(Continued)

3

2

3

2

2022/TDC(CBCS)/EVEN/SEM/ MTMSEC-401T (A/B/C)/263