CENTRAL LIBRARY N.C.COLLEGE

2022/TDC (CBCS)/EVEN/SEM/ MTMHCC-403T/261

TDC (CBCS) Even Semester Exam., 2022

MATHEMATICS

(Honours)

(4th Semester)

Course No.: MTMHCC-403T

(Ring Theory)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions :

2×10=20

- 1. Give example, with brief justification, of a non-commutative ring with unity.
- 2. Let R be a ring and $a \in R$. Show that $a \cdot 0 = 0 \cdot a = 0$

where 0 is the additive identity in R.

(Turn Over)

(2)

- **3.** Define integral domain. Give one example of an integral domain.
- 4. Define left ideal and right ideal of a ring.
- **5.** If an ideal I of a ring R contains a unit, show that I = R.
- **6.** A is a prime ideal and B is a maximal ideal of a commutative ring R with unity. What can you conclude about the factor rings R/A and R/B?
- 7. Define ring homomorphism.
- **8.** Let $\phi: R \to S$ be a ring homomorphism. Show that if R is commutative, then $\phi(R)$ is commutative.
- **9.** Define kernel of a ring homomorphism. Is the kernel of any ring homomorphism always non-empty? Justify.
- 10. Consider the elements $f(x) = 2x^3 + x^2 + x + 2$ and $g(x) = 2x^2 + 2x + 1$ in the polynomial ring $Z_3[x]$. Compute f(x) + g(x) and $f(x) \cdot g(x)$.
- 11. State division algorithm in polynomial ring over a field.

- 12. Define Euclidean domain.
- 13. Define irreducible polynomial in D[x] where D is an integral domain.
- 14. Give example, with justification, of a polynomial that is irreducible over Q but reducible over \mathbb{R} .
- 15. State Eisenstein's criterion of irreducibility.

SECTION-B

Answer any five of the following questions: 10×5=50

- 16. (a) Show that the set of all even integers under ordinary addition and multiplication is a commutative ring. Does it have unity? Justify.

 4+1=5
 - (b) Show that a non-empty subset S of a ring R is a sub-ring if S is closed under subtraction and multiplication, i.e., if $a-b \in R$ and $ab \in R$ wherever $a, b \in R$.
- 17. (a) Show that every finite integral domain is a field. Give example of an integral domain that is not a field. 4+1=5
 - (b) Show that the nilpotent elements of a commutative ring form a sub-ring. Is the result true for non-commutative ring?

 4+1=

4+1=5

5

18.	(a)	If A and B are ideals of a ring R, show that the sum $A+B=\{a+b a\in A,b\in B\}$ is also an ideal of R.	5
	(b)	Let R be a commutative ring with unity and A be an ideal of R . Show that R/A is an integral domain if and only if A is prime.	5
19.	(a)	Let R be a commutative ring with unity and let $a \in R$. Show that the set $\langle a \rangle := \{ra r \in R\}$ is an ideal of R .	5
	(b)	If R is a commutative ring with unity and A is an ideal of R , show that R/A is a commutative ring with unity. Under what condition on A will R/A be a field? 4+1	=5
20.	(a)	Let $\phi: R \to S$ be a ring homomorphism. Show that ϕ is an isomorphism if and only if ϕ is onto and ker $\phi = \{0\}$.	5
	(b)	Let $f:R \to S$ be a ring homomorphism. Show that $R / \ker f$ is isomorphic to $f(R)$.	5
21.	(a)	Show that the kernel of a ring homomorphism is an ideal of the domain ring.	4
	(b)	Let A and B be ideals of a ring R with $B \subseteq A$. Show that A/B is an ideal of R/B and $(R/B)/(R/A)$ is isomorphic to	

22.		Show that every Euclidean domain is a principal ideal domain.	5
		Show that in a principal ideal domain, an element is irreducible if and only if it is prime.	5
23.	(a)	If F is a field, show that $F[x]$ is a principal ideal domain.	5
	(b)	Let D be an integral domain. Show that the relation $a \sim b$ iff a and b are associates, is an equivalence relation on D .	5
24.	(a)	Show that in an integral domain, the product of an irreducible and a unit is irreducible.	5
	(b)	Show that the ring $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$	
		is not a UFD.	5
25.	(a)	cyclotomic polynomial	
	($\phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$	
		is irreducible over Q.	5
	(b)	non-zero element. If $f(x+a)$ is irreducible	
		over F , prove that $f(x)$ is irreducible over F .	5

(Continued)

6

22J—300**/1233**

2022/TDC (CBCS)/EVEN/SEM/ MTMHCC-403T/261

R/A.