2021/TDC/CBCS/ODD/ PHSHCC-501T/155

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

PHYSICS

(5th Semester)

Course No.: PHSHCC-501T

(Quantum Mechanics and Applications)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: 2×10=20

- 1. Give the physical interpretation of wave function.
- 2. State the principle of superposition of eigenstates.
- **3.** What do you mean by conservation of total probability in quantum mechanics?

(Turn Over)

(2)

- 4. What are Hermitian operators?
- 5. Write the operators associated with (a) energy and (b) momentum.
- **6.** What do you mean by the expectation values of dynamical quantities?
- 7. What do you mean by the term 'potential barrier' in quantum mechanics?
- **8.** What is zero-point energy of a harmonic oscillator?
- 9. Mention two applications of Schrödinger equation.
- 10. What is Larmor's theorem?
- 11. What is Bohr magneton?
- 12. Define gyromagnetic ratio.
- 13. What is Zeeman effect?
- 14. Define Stark effect.
- 15. What is Pauli's exclusion principle?

SECTION—B

Answer any five of the following questions: $6 \times 5 = 30$

- **16.** Obtain the general solution of three-dimensional Schrödinger time-dependent wave equation.
- 17. Derive the equation of continuity

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$$

where $\rho = \psi^* \psi$ is the probability density and J = current density. What is its significance?

- **18.** Define angular momentum operator and show that $[L_x, L_y] = i\hbar L_z$.
- 19. Prove Ehrenfest theorem.
- 20. Write down the Schrödinger equation for a linear harmonic oscillator and obtain the eigenvalues of the energy of the oscillator.
- **21.** A particle is confined in a one-dimensional infinite square well.

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & x < 0, x > a \end{cases}$$

Write down the time-independent Schrödinger equation for 0 < x < a and solve it.

CENTRAL LIBRARY N.C.COLLEGE

(4)

- 22. Write down the Schrödinger wave equation for the motion of the electron in hydrogen atom in spherical polar coordinates and separate it into radial and angular parts.
- **23.** Find the expression for the orbital and the spin magnetic moments associated with an electron.
- 24. Describe Stern-Gerlach experiment.
- 25. Describe vector atom model.

2021/TDC/CBCS/ODD/ PHSHCC-502T/156

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

PHYSICS

(5th Semester)

Course No.: PHSHCC-502T

(Solid-State Physics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions: 2×10=20

- 1. Distinguish between crystalline and amorphous solids.
- 2. Show that in simple cubic lattice

 d_{100} : d_{110} : d_{111} = 1:0.71:0.58

(2)

- 3. Define primitive cell and unit cell.
- 4. What do you mean by lattice vibration?
- 5. Define forbidden band in lattice vibration
- **6.** Discuss the limitations of Einstein's theory of lattice specific heat.
- 7. What is a magnetic material? What are its different classes?
- **8.** Explain the difference among ferro-, antiferro- and ferrimagnetic materials.
- **9.** What is hysteresis? State the significance of hysteresis loop.
- 10. What do you mean by dielectric polarization?
- 11. State the relation between electronic polarizability and relative permittivity.
- 12. Compare ferroelectricity with piezoelectricity.
- **13.** What is Hall effect? Why is the Hall coefficient positive in some metals?

- **14.** Discuss the effect of magnetic field on superconductivity.
- **15.** State the variation of position of Fermi level in extrinsic semiconductor with temperature.

SECTION-B

Answer any five of the following questions: $6 \times 5=30$

16. (a) Show that in a cubic crystal of side a, the inter-planar spacing between consecutive parallel planes of Miller indices (hkl) is

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
 3

- (b) Draw the following planes in the case of an FCC structure:
 - (i) (100)
 - (ii) (110)
 - (iii) (112)
- 17. (a) What are Miller indices? Obtain the Miller indices of a plane having intercepts of a, b/2 and ∞ on the a-, b- and c-axis respectively. 1+2=3

3

(4)

(b)	State Bragg's law of X-ray diffraction.
	The spacing between successive
	(100)-planes of NaCl is 2·82 Å. X-rays
	incident on the surface of the crystal
	is found to give rise to first-order Bragg
	reflection at glancing angle 8.8°.
	Calculate the wavelength of X-rays. 1+2=3

- 18. (a) What is a phonon? Name the different branches of the dispersion relation curve in case of diatomic lattice. What is the difference between the two branches?
 - (b) Explain the origin of acoustical and optical branches in linear diatomic lattice. Why are these branches named so?
- **19.** (a) Give a comparative study of Einstein's theory and Debye theory of specific heat of solids.
 - (b) What is Debye temperature? Write down the Einstein's and Debye's expressions for the specific heat of solids.
- **20.** (a) State Curie-Weiss law and discuss its application to ferromagnetic materials.
 - (b) Point out the essential difference between the classical theory and quantum theory of paramagnetism.

21. (a) If the magnetization and flux density of a magnetic material be 3200 A/m and 0.005 Wb/m², then calculate the relative permeability of the material.

- (b) Explain the B-H loop with the help of domain theory.
- 22. (a) What is local field? Starting from Clausius-Mosotti equation, explain the origin of spontaneous polarization. 1+2=3
 - (b) What are the various components of the local electric field at an atom in a crystal? Obtain the Lorentz relation for the local electric field. 1+2=3
- 23. (a) Discuss the origin of ferroelectricity.

 What is polarization catastrophe? 2+1=3
 - (b) Write a short note on any one of the following:
 - (i) Relaxation time of polarization
 - (ii) Internal field of solids
 - (iii) Debye equation

22J/848

(Continued)

3

3

3

3

3

3

22J**/848**

(Turn Over)

3

3

3

(6)

24. (a) The solution of Schrödinger equation for one-dimensional periodic lattice is given by

$$P\frac{\sin\alpha a}{\alpha a} + \cos\alpha a = \cos ka$$

when $\alpha^2 = \left(\frac{2mE}{\hbar^2}\right)$. The symbols have

their usual significance. Discuss the formation of energy bands in a solid.

3

3

3

- (b) What is Hall angle? Find an expression for Hall voltage and Hall coefficient. State the importance of this effect.
- **25.** (a) Write down first and second London equations. What do you mean by London penetration depth?
 - (b) What is Meissner effect? Show that a superconductor behaves as a diamagnet. 3

 $\star\star\star$