CENTRAL LIBRARY N.C.COLLEGE

2020/TDC (CBCS)/ODD/SEM/ PHSHCC-501T/155

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

PHYSICS

5th Semester

Course No.: PHSHCC-501T

(Quantum Mechanics and Applications)

Full: Marks: 50 compole
Pass Marks: 20 bit compole

The tribute of Time: 3 hours to book and

The figures in the margin indicate full marks for the questions

o serviced **Section** (LA) discribed William in the Argerta.

- - (a) Write two properties of wave function.
 - (b) Write the operators associated with—
 - (i) energy;
 - (ii) momentum.
 - (c) What do you mean by the expectation values of dynamical quantities?

(3)

- (d) Write the values of the following commutators:
 - (i) $[L_x, L_y]$
 - (ii) $[L^2, L_z]$
- (e) What do you mean by normalized and orthogonal wave functions?
- Heisenberg's explain and State uncertainty principle.
- Name an experiment which supports electron spin hypothesis. What is its principle?
- Mention two applications of Schrödinger equation.
- Explain the quantum picture of a material particle.
- What is the difference between phase velocity and group velocity?
- (k) What do you understand by free particle? Write the time-independent Schrödinger equation for free particle.
- Explain Stark effect.
- (m) Explain what you understand by the term 'potential barrier'.
- (n) Briefly explain about Larmor's theorem.

(Continued)

- Explain Pauli's exclusion principle.
- Explain the coupling of orbital and spin angular momenta in vector atom model.
- State the principle of superposition of eigenstates.
- What is Zeeman effect?
- Discuss the origin of quantum mechanics.
- Define density of energy states.

SECTION—B

Answer any five questions

2. Give the Max Born idea of probability of finding a particle associated with a wave. Also derive the equation of continuity

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$$

where,

 $\rho = \psi^* \psi$ is the probability density J = current density1+5=6

3. Derive Schrödinger time-dependent form of wave equation for a particle characterized by the PE function V(r, t).

(Turn Over)

CENTRAL LIBRARY N.C.COLLEGE

(.4.):

4.	Explain anomalous Zeeman effect.	e
5.	Deduce the expression of Hamiltonian in quantum mechanics. Hence use it to find Schrödinger time-independent equation.	e
6.	Establish Schrödinger equation for a linear harmonic oscillator. Write down the expression for eigenvalues of the energy levels of the oscillator. 4+2=	=6
7.	A particle, moving in a one-dimensional potential, is given by $V = 0$ for $x < 0$ and $V = V_0$ for $x \ge 0$. Write down the Schrödinger wave equation for the particle and solve it.	6
8.	Write the Schrödinger equation for hydrogen atom in spherical polar coordinates and split it into the radial, polar and azimuthal parts.	6
9.	Define angular momentum operator and show that $[L_x, L_y] = i\hbar L_z$. 1+5=	-6
10.	Describe Stern-Gerlach experiment.	6
11.	What are symmetric and anti-symmetric wave functions? Show how they lead to the Pauli's exclusion principle. 2+4=	:6