2021/TDC/CBCS/ODD/ PHSHCC-301T/150

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

PHYSICS

(3rd Semester)

Course No.: PHS HCC-301T

(Mathematical Physics—II)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions: 2×10=20

- 1. Explain what you understand by odd function and even function.
- 2. State whether $y = \tan x$ can be expressed as a Fourier series. If so, how? If not, why?

(2)

(3)

- 3. State Parseval's identity.
- **4.** Explain what you understand by regular and irregular singular points.
- **5.** Find the ordinary point and singular point of the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (1 - x)y = 0$$

6. What is the degree and order of the following differential equation?

$$\frac{dy}{dx} = \frac{x^4 - y^4}{(x^2 + y^2)xy}$$

- 7. Write the Rodrigues' formula for Legendre polynomial. What is the orthogonality condition of the Legendre polynomial?
- **8.** Prove that $P_n(1) = 1$.
- **9.** Expand $J_0(x)$.
- **10.** Find the value of $\Gamma\left(\frac{1}{2}\right)$.
- 11. Prove that beta function $\beta(m, n)$ is symmetric in m and n.

- **12.** Prove that $\delta(x) = \delta(-x)$.
- **13.** Express Laplace's equation in cylindrical coordinates.
- 14. Solve

$$\frac{\partial^2 z}{\partial x \partial y} = x^2 y$$

15. Write down two applications of PDE in physics.

SECTION-B

Answer any five of the following questions: 6×5=30

- **16.** Find the Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$.
- 17. A sawtooth wave is defined as f(x) = x, $-\pi \le x \le \pi$. Find the Fourier series of the function.
- 18. Write down Legendre's differential equation and obtain the power series solution for it. 6
- **19.** Discuss Frobenius method of solving a differential equation.

(4)

- **20.** Find the expand of $J_{1/2}(x)$ using the general expression for Bessel function of first kind. 6
- **21.** Prove the recurrence relations: 3+3=6
 - (i) $xJ'_n(x) = nJ_n(x) xJ_{n+1}(x)$
 - (ii) $2nJ_n(x) = x[J_{n-1}(x) + J_{n+1}(x)]$
- 22. (a) Prove that

$$\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

(b) Show that

$$\beta(m+1, n) = \frac{m}{m+n}\beta(m, n)$$
 4+2=6

- 23. Explain how Dirac delta function can be expressed as a limit of (a) Gaussian function and (b) rectangular function. 3+3=6
- **24.** The displacement y of a viscously damped string is given by

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - 2k \frac{\partial y}{\partial t}$$

Find the general solution of the above equation by the method of separation of variables. (5)

25. Solve the boundary value problem

$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$

given $u(0, y) = 8e^{-3y}$, by the method of separation of variables.

 $\star \star \star$

6

CENTRAL LIBRARY N.C.COLLEGE

2021/TDC/CBCS/ODD/ PHSHCC-302T/151

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

PHYSICS

(3rd Semester)

Course No.: PHSHCC-302T

(Thermal Physics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions:

 $2 \times 10 = 20$

- 1. What are reversible and irreversible processes?
- 2. Explain why gases have two specific heats while solids have only one.
- **3.** Distinguish between isothermal and adiabatic processes.

22J/689

(Turn Over)

4.	Narrate	the	third	law	of	thermodynamic	S.
••	- tarracc	CLIC	CIIII CI	ia w	OI	uicimouviiamic	

- **5.** Explain in brief the concept of 'heat death of the Universe'.
- **6.** State the significance of thermodynamic potential.
- **7.** What do you mean by Joule-Kelvin coefficient for an ideal gas?
- **8.** Discuss in brief the change of temperature during adiabatic process.
- **9.** Define phase transition. What is first order phase transition?
- 10. Define free path and mean free path.
- 11. State the law of equipartition of energy.
- **12.** What is the effect of temperature and pressure on thermal conductivity?
- 13. State the law of corresponding states.
- 14. What is temperature of inversion?
- **15.** In what way a real gas differs from an ideal gas?

_		
SECT		, ,
DEA.	1 1 1 1 1 1 1	

Answer any five of the following questions: 6×5=30

- **16.** (a) Show that for one mole of an ideal gas $C_p C_v = R$ (symbols have their usual meanings).
 - (b) A Carnot engine has an efficiency of 30% when the temperature of the sink is 27 °C. What must be the change in temperature of the source to make its efficiency 50%?
- 17. (a) State the first law of thermodynamics.

 Explain how first law of thermodynamics leads to the concept of internal energy.

 1+2=3
 - (b) Write the second law of thermodynamics as stated by Kelvin-Planck and Clausius, and discuss their equivalence.
- **18.** (a) Show that the entropy of a perfect gas remains constant in a reversible process.
 - (b) State and explain the temperatureentropy diagram for Carnot's cycle.
- 19. (a) Prove that for a complete reversible cycle, change in the state of substance $\oint dS = 0$.

3

3

3

3

3

(4)

	(b)	Define the following: (i) Enthalpy (ii) Helmholtz free energy (iii) Gibbs' free energy	3
20.	(a)	Derive the Clausius-Clapeyron equation.	3
	(b)	From the consideration of Maxwell's thermodynamic relations, show that $C_p - C_v = R$ (here symbols have their usual meanings).	3
21.	(a)	Deduce Maxwell's first thermodynamic relation using the laws of thermodynamics.	3
	(b)	Explain how the boiling point of a liquid and melting point of a solid are affected with the change of pressure.	3
22.	(a)	Using Maxwell-Boltzman distribution law of velocities, find an expression for the mean speed in an ideal gas.	3
	(b)	What do you mean by Doppler broadening of spectral lines?	3
23.	(a)	Discuss in brief the Brownian motion and its significance.	3

	(b)	Derive the relation for coefficient of self-diffusion D and show that it is directly proportional to $T^{3/2}$.	3
24.	(a)	What is Joule-Thomson effect? How will you interpret the effect experimentally?	3
	(b)	Discuss in brief Andrews experiment on ${\rm CO}_2$ gas.	
25.	(a)	Define critical coefficient of a gas. Is it same for all gases? Does experimental value agree with the theoretical value?	3
	(b)	Define temperature of inversion. Derive the expression for the inversion temperature for van der Waals' gas $T_i = \frac{2a}{R_b}$.	3

2021/TDC/CBCS/ODD/ PHSHCC-303T/152

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

PHYSICS

(3rd Semester)

Course No.: PHSHCC-303T

(Digital Systems and Applications)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions:

2×10=20

- **1.** Obtain the expression for deflection sensitivity of a CRO.
- 2. Give two examples each of linear and digital ICs.
- **3.** Convert 4DF hexadecimal number to octal number.

22J/690

(Turn Over)

- **4.** What do you mean by minterms and maxterms?
- **5.** Draw the block logic diagram of the following Boolean equation :

$$Y = AC + B\overline{C}$$

- 6. Write briefly about decoders.
- 7. Discuss how 2's complement method is used in representing a negative number.
- **8.** What do you mean by race-around conditions in a *J-K* flip-flop?
- **9.** Briefly describe the working of a 2-bit binary adder.
- **10.** What is the function of shift registers in digital computers?
- **11.** Describe briefly how data is stored in digital computers.
- 12. Write a brief note on ring counters.
- 13. Draw the block diagram of the organization of an 8085 microprocessor.

- **14.** Why is stack memory used in microprocessors?
- **15.** Write MOV and MVI instructions used in 8085 microprocessor.

SECTION-B

Answer any *five* of the following questions: $6 \times 5 = 30$

- 16. Using labelled diagram, realize two-input OR and AND gates using diodes and hence explain their working.

 3+3=6
- **17.** (a) Explain active and passive components used in electronics with examples.
 - (b) Explain how phase difference between two sinusoidal signals is measured by using a CRO.
- **18.** (a) Verify the following Boolean laws: (i) $A \cdot \overline{A} = 0$ (ii) $A + \overline{A} = 1$
 - (b) State and prove De Morgan's laws.
- 19. (a) Simplify the following expression: 1 $\frac{\overline{AB} + \overline{A} + AB}{\overline{AB} + \overline{A} + AB}$
 - (b) What is a multiplexer? Explain the working of a 4-bit multiplexer. 5

2

4

CENTRAL LIBRARY N.C.COLLEGE

(4)

20.	(a)	What is the function of <i>D</i> flip-flop in digital electronics?	2	
	(b)	Develop the truth table for a half-adder and then draw its logic circuit diagram along with its Boolean expressions.	4	
21.	Explain the working of a <i>J-K</i> flip-flop with proper logic diagram.			
22.	para	cribe in detail about parallel-in allel-out shift register used in digital aputers.	6	
23.		n proper diagram, describe various ctional units of a digital computer.	6	
24.	(a)	Write an example of instruction code each for 1-byte and 2-byte instructions.	2	
	(b)	With proper diagram, describe the internal organization of an 8085 microprocessor.	4	
25.	555	olain the pin-out configurations of a timer IC. Explain its working as a nostable multivibrator of a given duration.	6	
