CENTRAL LIBRARY N.C.COLLEGE

2020/TDC (CBCS)/ODD/SEM/ PHSDSC/GE-301T/153

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

PHYSICS

(3rd Semester)

Course No.: PHSDSC/PHSGE-301T

(Thermal Physics and Statistical Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any fifteen of the following questions:

1×15=15

- 1. State zeroth law of thermodynamics.
- 2. Is internal energy a state function?
- **3.** Which thermodynamic process is also called an isentropic process?

10-21**/82**

(Turn Over)

(2)

- **4.** Name the thermodynamic process for which $\Delta W = 0$.
- 5. Define entropy.
- 6. In which states of matter, entropy is maximum?
- 7. Define internal energy.
- 8. Define Gibbs' function.
- 9. Define Helmholtz function.
- 10. Write Clausius-Clapeyron equation.
- 11. During free expansion, which thermodynamic function does not change?
- 12. What is Joule-Thomson effect?
- 13. Define mean free path.
- 14. Write down Maxwell's expression of mean free path.

- 15. What is diffusion?
- 16. What do you mean by transport phenomena?
- 17. What is the effect of temperature on viscosity?
- **18.** At which temperature, all molecular motions cease?
- 19. What is a perfect blackbody?
- 20. What is black-body radiation?
- 21. Why does a blackbody appear black?
- 22. State Stefan's law.
- 23. State Wein's distribution law.
- 24. Who resolved ultraviolet catastrophe?
- 25. What is statistical mechanics?

(4)

- 26. Define macrostate.
- **27.** Write down the relation between entropy and thermodynamic probability.
- 28. Name one particle which obeys FD statistics.
- 29. Who formulated quantum statistics?
- 30. State Maxwell-Boltzmann law.

SECTION-B

Answer any five of the following questions: 2×5=10

- **31.** Why is C_p greater than C_V ?
- **32.** Distinguish between reversible and irreversible processes.
- **33.** Deduce Clausius-Clapeyron equation using Maxwell's relation

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

- 34. In a throttling process (Q=0), the system suffers no change in enthalpy. Justify.
- 35. State the assumptions of kinetic theory.
- **36.** How does mean free path vary with temperature and pressure?
- 37. A perfect blackbody is the best possible emitter. Justify.
- **38.** What are the assumptions made by Planck to deduce Planck's radiational law?
- **39.** Name the particles which have zero or integral spin. Give an example of such particle.
- **40.** What are the assumptions of ME distribution?

SECTION-C

Answer any five of the following questions: $5\times5=25$

- 41. Find the expression of work done during an adiabatic process.
- 42. Show that for a reversible cyclic process, the total change of entropy is zero.
- 43. Using Maxwell's relation, prove that

$$\left(\frac{\partial C_{v}}{\partial V}\right)_{T} = T \left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V}$$

44. Prove that

$$U = F - T \left(\frac{\partial F}{\partial T} \right)_V$$

- **45.** Find the expression of diffusion coefficient D.
- 46. Explain the different types of transport phenomena citing examples.
- 47. Deduce Planck's radiational law.

- 48. Deduce Wein's distribution law.
- 49. Establish the relation $S = k \log \Omega$.
- 50. Deduce Maxwell-Boltzmann distribution law.