CENTRAL LIBRARY N.C.COLLEGE

2020/TDC (CBCS)/ODD/SEM/ PHSHCC-302T/151

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

en en jorden gregorier i de geraf verste de la

PHYSICS

(3rd Semester)

Course No. : PHSHCC-302T

(Thermal Physics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- 1. Answer any ten of the following questions:

 2×10=20
 - (a) The conduction of heat from a hot body to cold body is reversible or irreversible process. Explain.
 - (b) What is meant by thermodynamic equilibrium?

- Distinguish between isothermal and adiabatic processes.
- Why is C_p greater than C_V ?
- What happens to change in entropy of a system which undergoes (i) a reversible process and (ii) an irreversible process?
- Explain in brief the concept of heat death of the universe'.
- State the significance of thermodynamic potentials.
- (h) Name the processes, the Carnot engine undergoes during its complete cycle.
- Does boiling point of a liquid remain constant at all pressure? Explain.
- Why does a rubber string heat up on stretching?
- Write four Maxwell's thermodynamic relations.
- What do you mean by first-order phase transition?
- (m) What is the effect of temperature and pressure on thermal conductivity?
- (n) Define free path and mean free path.

- Define degrees of freedom and law of equipartition energy.
- Define and explain transport phenomenon.
- In what way a real gas differs from an ideal gas?
- Mention the limitation of van der Waals' equation.
- Distinguish between adiabatic expansion and Joule-Thomson effect.
- Define critical constant.

SECTION—B

Answer any five questions

- What is internal energy of a system? "Internal energy is state function and not a path function." Explain.
 - Show that the work done in adiabatic expansion of an ideal gas from a state (P_1, V_1) to a state (P_2, V_2) is given by

$$W = \frac{1}{\gamma - 1} [P_1 V_1 - P_2 V_2]$$
 3

. 3

(5)

3. (a) A Carnot engine has an efficiency of 30% when the temperature of the sink is 27 °C. What must be the change in temperature of the source to make its efficiency 50%?

Explain thermodynamic scale temperature and show that the thermodynamic and the ideal gas scale are identical.

3

3

3

3

(a) Prove that for a complete reversible cycle change in the state of substance $\oint dS = 0$.

Explain the concept of entropy and disorder.

(a) Establish the relation for efficiency of a Carnot's engine using T-s diagram in

 $\eta = \frac{T_1 - T_2}{T_1}$

Define the Helmholtz function and for an isochoric process, establish the relation

 $U = F - T \left(\frac{\partial F}{\partial T} \right)_{V}$

6. (a) Using Maxwell's thermodynamic relations, prove that for any substance, the ratio of the adiabatic and isothermal elasticities is equal to the ratio of the two specific heats.

3

(b) Taking into consideration of Maxwell's thermodynamical relations, show that

$$C_P - C_V = TE\alpha^2 V$$

where T is the absolute temperature, E is the modulus of isothermal elasticity, α is the coefficient of volume and V is the specific volume.

3

Discuss about second-order phase transition and hence derive Ehrenfest's theorem.

3

Prove the following thermodynamic relations: 1½×2=3

(i)
$$TdS = C_V dT + T \left(\frac{\partial P}{\partial T}\right)_V dV$$

(ii) $TdS = C_P dT - T \left(\frac{\partial V}{\partial T} \right)_P dP$

8. (a) Assuming M-B distribution of molecular speeds, show that the most probable speed is given by

 $v_{mp} = \sqrt{\frac{2kT}{m}}$

- (b) Calculate the Doppler broadening in hydrogen line 4861 Å for T = 400k. Given $k = 1.380 \times 10^{-16}$ erg per degree.
- 9. (a) Obtain Maxwell's expression for mean free path

$$\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 n}$$

where σ is the molecular diameter and n is the number of molecules per unit volume on the basis of kinetic theory of gases.

- (b) Derive the relation for coefficient of self-diffusion D and show that it is directly proportional to $T^{3/2}$.
- 10. (a) What do you understand by virial coefficients? What is the value of first virial coefficient? How does the second virial coefficient vary with temperature?
 - (b) Define critical coefficient of a gas. Is it same for all gases? Does experimental value agree with the theoretical value?

- 11. (a) What is Joule-Thomson effect? How will you interpret the effect experimentally?
 - (b) Define temperature of inversion. Derive the expression for the inversion temperature for van der Waals' gas

$$T_i = \frac{2a}{R_b}$$
 3

3

3

3

3

3