CENTRAL LIBRARY N.C.COLLEGE

2019/TDC/ODD/SEM/ PHSHCC-301T/072

TDC (CBCS) Odd Semester Exam., 2019

PHYSICS

(3rd Semester)

Course No.: PHSHCC-301T

(Mathematical Physics-II)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two questions:

2×2=4

- (a) What do you mean by odd function and even function?
- (b) Write down Dirichet's conditions for a Fourier series.
- (c) Discuss the uses of Fourier series in Physics.

20J/1105

(Turn Over)

(3)

2. Answer (a) or (b):

(a) After writing down the orthogonality relations for sine and cosine functions find expressions for Fourier coefficients.

2+4=6

- (b) (i) Sketch a graph from $x = -4\pi$ to 4π for the following function: 2 $f(x) = x, 0 < x \le 2\pi \text{ and } f(x+2\pi) = f(x)$
 - (ii) Find Fourier series for the above function.

UNIT-II

- 3. Answer any two questions: $2 \times 2 = 4$
 - (a) Explain the terms ordinary and singular points in the context of ODE.
 - (b) What do you mean by regular and irregular singular points?
 - (c) What do you mean by indicial equation obtained during power series solution of ODE around regular singularity?

4. Answer (a) or (b):

(a) (i) Write down Legendre's differential equation and check the nature of x = 0.

- (ii) Hence obtain power series solution of it.
- b) Discuss Frobenius method of solving a differential equation.

UNIT-III

- 5. Answer any two questions: 2×2=4
 - (a) Discuss the use of Legendre polynomials in physics.
 - (b) Write down the generating function of Bessel function. Hence find inversion property $J_n(-x) = (-1)^n J_n(x)$.
 - (c) Prove, using generating function, that a Legendre's polynomial is either an odd function or an even function.

6. Answer (a) or (b):

- (a) Prove orthogonal property of legendre's polynomial.
- (b) Prove the following recurrence properties: 3+3=6

(i)
$$np_n(x) = xp'_{n+1}(x) - p'_{n-1}$$

(ii) $np_n(x) = (2n-1)x \ p_{n-1}(x) - (n-1)p_{n-1}(x)$

6

6

(4)

UNIT-IV

- 7. Evaluate any *two* of the following using properties of gamma function/beta function/Dirac delta function. 2×2=4
 - (i) $\int_0^\infty e^{-x} x^{5/2} dx$
 - (ii) $\int_0^{\pi/2} \sin^4 \theta \ d\theta$
 - (iii) Find $\Gamma\left(\frac{1}{2}\right)$
- **8.** Answer (a) or (b):
 - (a) (i) Prove that

$$\beta(m, n) = \beta(n, m)$$

2

4

2

(ii) Prove that

$$\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

- (b) (i) Prove that $\delta(x) = \delta(-x)$
 - (ii) Explain how Dirac delta function can be represented as limit of a Gaussian function.

(5)

UNIT-V

9. Answer any two of the following questions:

 $2 \times 2 = 4$

6

- (a) Define partial differential equation and its order.
- (b) Write down Laplace's equation in spherical polar coordinates.
- (c) Write down two applications of PDE in physics.
- 10. Answer (a) or (b) :
 - (a) Solve the following equation using method of variable separation:

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

where

$$v = 0$$
 for $y = 0$ and $y = a$, and $v = v_0$ for $x = -b$ and $x = b$

(b) Write down the wave equation for vibrational modes of a stretched string.
 Hence solve it. 1+5=6

 $\star\star\star$

2019/TDC/ODD/SEM/ PHSHCC-301T/072

2019/TDC/ODD/SEM/ PHSHCC-302T/073

TDC (CBCS) Odd Semester Exam., 2019

PHYSICS

(3rd Semester)

Course No.: PHSHCC-302T

(Thermal Physics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer all questions

UNIT-I

1. Answer any two of the following questions:

2×2=4

- (a) State the Zeroth law of thermodynamics.
- (b) Explain why gases have two specific heats while solids have only one.
- (c) What are reversible and irreversible processes?

(2)

2.	Answer either $[(a)$ and $(b)]$ or $[(c)$ and $(d)]$:							
	(a)	State the first law of thermodynamics. Explain how first law of thermodynamics leads to the concept of internal energy. 1+2	2=3					
	(b)	Show that, for one mole of an ideal gas $C_p - C_v = R$. (Symbols have their usual meanings)	3					
	(c)	Write the second law of thermodynamics as stated by Kelvin-Planck and Clausius and discuss their equivalence.	3	1				
	(d)	State and prove Carnot's theorem.	3					
		UNIT—II		•				
3.	Ans	wer any two of the following questions : $2\times$	2=4	1				
<u>.</u>	(a)	State the concept of entropy.						
	(b)	Give the second law of thermodynamics in terms of entropy.						
	(c):	Narrate the third law of thermo- dynamics.						

4. Answer either [(a) and (b)] or [(c) and (d)]:								
	(a)	Show that the entropy of a perfect gas remains constant in a reversible process.	3					
	(b)	Discuss in brief the entropy of the universe.	3					
	(c)	State and explain the temperature- entropy diagram for Carnot's cycle.	3					
	(d)	Define the following:	3					
	(i) Enthalpy							
	· · ·	(ii) Helmholtz free energy						
		(iii) Gibb's free energy						
		UNIT—III						
		wer any <i>two</i> of the following questions: $2\times2^{-}$	- 4					
i, a tra	(a) What do you mean by Joule-Kelvin coefficient for ideal gas?							
		Discuss in brief the change of temperature during adiabatic process.						
	(c)	Define phase transition. What is first order phase transition?						
		_						

(4)

6.	Answer	either	[(a)]	and	<i>(b)</i>]	or	(c)	and	(d)1	:

- (a) Deduce Maxwell's first thermodynamic relations using the laws of thermodynamics.
- (b) From the consideration of Maxwell's thermodynamic relations, show that $C_p C_v = R$ (here the symbols have their usual meanings).
- (c) Derive the Clausius-Clapeyron equation.
- (d) Explain how the boiling point of a liquid and melting point of a solid are affected with the change of pressure.

UNIT-IV

7. Answer any two of the following questions:

2×2=4

3

3

3

3

- (a) What do you mean by RMS and most probable speeds of an ideal gas?
- (b) State the law of equipartition of energy.
- (c) Define specific heats of gases.

8.	Answer	either	[(a)	and	(b)]	or	[(c)	and	(d)] _/ :
----	--------	--------	------	-----	------	----	------	-----	---------------------

- (a) Using Maxwell-Boltzman distribution law of velocities find an expression for the mean speed in an ideal gas.
- (b) What do you mean by Doppler broadening of spectral lines?
- (c) Related to the transport phenomenon in ideal gases, give a brief concept of the following:
 - (i) Viscosity
 - (ii) Thermal conductivity
 - (iii) Diffusion
- (d) Discuss in brief the Brownian motion and its significance.

UNIT--V

9. Answer any two of the following questions:

2×2=4

3.1

3

3

3

3

- (a) What do you mean by Boyle temperature?
- (b) State the law of corresponding states.
- (c) What is temperature of inversion?

20J/1106

(Turn Over)

CENTRAL LIBRARY N.C.COLLEGE

(6)

10. Answer either (a) or (b):

(a) Discuss Andrew's experiment on CO_2 gas.

6

(b) What are critical constants of a real gas? Find the expressions for each of them.

5

2019/TDC/ODD/SEM/ PHSHCC-303T/074

TDC (CBCS) Odd Semester Exam., 2019

PHYSICS

(3rd Semester)

Course No.: PHSHCC-303T

(Digital Systems and Applications)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- **1.** Answer any two of the following: $2 \times 2 = 4$
 - (a) How the intensity of electron beam and the intensity of image are controlled in a CRO?
 - (b) Find 2's component of 1101001.
 - (c) Determine the decimal number represented by the binary number 101101 10101.

20J/1107

(Turn Over)

(121) /TDC/ODD/SEM/

2. Answer either (a) or (b):

(a) Draw the block diagram of a CRO. How can the phase difference between two AC signals of same frequency and amplitude be measured using a CRO?

2+4=6

(Continued)

(b) Explain the operation of a NOT gate with the help of a transistor. Write down the truth table of an XOR gate. 4+2=6

UNIT-II

- **3.** Answer any *two* of the following: $2 \times 2 = 4$
 - (a) State De Morgan's theorem.
 - (b) Show that

$$A\cdot (B+\overline{B}C)=A\cdot (B+C)$$

- (c) What is the use of a multiplexer circuit?
- 4. Answer either (a) or (b):
 - (a) Design a circuit to realize the function $Y = (A + BC) (B + \overline{C}A)$
 - (i) using NAND gate only
 - (ii) using NOR gate only
 (Complementary form of the literal can be taken as inputs.)

 3+3=6

(b) Minimize the following four-variable logic function using K-map:

 $\int (A, B, C, D) = \sum m(0, 1, 2, 3, 5, 7, 8, 9, 11, 14)$

nsing block man truth truth table and

- 5. Answer any two of the following: $2\times2=4$
 - (a) Find 48–23 using 2's complement method. You can use 8-bit representation of numbers.
 - (b) What do you mean by toggling in a *J-K* flip-flop?
 - (c) Draw the block diagram of IC555.
- 6. Answer either (a) or (b):
 - (a) Explain how 555 timer can be used as an astable multivibrator. Realize a full-adder with NAND gate. 4+2=6
 - (b) What is an adder? Explain full-adder operation with logic gates giving the truth table. 1+5=6

UNIT-IV

- 7. Answer any two of the following: $2\times 2=4$
 - (a) Name one input and one output device of a computer.

CENTRAL LIBRARY N.C.COLLEGE

(4)

(b)	What	do	you	mean	by	а	'counter'?
-----	------	----	-----	------	----	---	------------

- (c) What is a 'cache memory?
- 8. Answer either (a) or (b):
 - (a) Explain the operation of mod-3 counter using block diagram, truth table and waveform chart.

(b) Write a short note on ROM.

UNIT-V

- **9.** Answer any two of the following: $2\times2=4$
 - (a) Give an example each of 1-byte and 2-byte instructions.
 - (b) Define 'bus'.
 - (c) What is the difference between MOV and MVI instructions of a an 8085 microprocessor?
- 10. Answer either (a) or (b):
 - (a) Draw the architecture of μP8085 and mention its various blocks. List the various registers of 8085.
 - (b) Write down the program to add two sixteen-bit numbers. Draw the corresponding flow chart. 4+2=6

6

6