2019/TDC/ODD/SEM/PHSGE/ PHSDSC-101T/071

TDC (CBCS) Odd Semester Exam., 2019

PHYSICS

(1st Semester)

Course No.: PHSGE/PHSDSC-101T

(Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer all questions

UNIT-I

- 1. (a) Answer any three questions from the following: 1×3=3
 - (i) What is parallelogram law of vector addition?
 - (ii) What is the scalar product of two oppositely directed vectors?

20J/1104

(Turn Over)

- (iii) Does commutative law hold good in the scalar product?
- (iv) For the orthogonal triad of unit vectors \hat{i} , \hat{j} and \hat{k} , what is the value of $\hat{i} \times \hat{i}$ and $\hat{i} \times \hat{j}$?
- (b) Answer any *one* question from the following:
 - (i) Find the unit vector perpendicular to each of the vectors $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} 2\hat{j} + 4\hat{k}$.

2

- (ii) If $\vec{A} = 4\hat{i} + 6\hat{j} 3\hat{k}$ and $\vec{B} = 2\hat{i} + 5\hat{j} + 7\hat{k}$, find the angle between \vec{A} and \vec{B} .
- 2. Answer either (a) or (b):
 - (a) Prove that $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) \vec{C}(\vec{A} \cdot \vec{B})$.
 - (b) What do you mean by first-order homogeneous differential equation? Solve y'+0.05y=0, given y=100 and x=0. 2+3=5

Unit—II

- 3. (a) Answer any three questions from the following: 1×3=3
 - (i) Define non-inertial frame of reference.
 - (ii) Give an example of application of Newton's third law of motion.
 - (iii) State the law of conservation of momentum.
 - (iv) Define torque.
 - (b) Answer any one question from the following:
 - (i) Explain in brief the centre of mass of a system of particles.
 - (ii) Define kinetic energy and potential energy.
- 4. Answer either (a) or (b):
 - (a) State ane prove work-energy principle. 5
 - (b) State Newton's second law of motion.

 Show that first law is contained in the second law of motion.

 2+3=5

20J**/1104**

(Turn Over)

(5)

UNIT-III

- 5. (a) Answer any three questions from the following: 1×3=3
 - (i) What is GPS?
 - (ii) What do you mean by a central force?
 - (iii) Define universal gravitational constant.
 - (iv) State Kepler's first law.
 - (b) Answer any one question from the following:
 - (i) Explain in brief weightlessness of a body.
 - (ii) State Newton's law of gravitation.
- 6. Answer either (a) or (b):
 - (a) Write short notes on (i) orbital velocity
 and (ii) geosynchronous orbit. 2½+2½=5

(b) Estimate the mass of the sun, assuming the orbit of the earth round the sun to be a circle. The distance between the sun and the earth is 1.49×10^{11} m and $G = 6.66 \times 10^{-11}$ Nm²kg⁻². Assume the time period of earth's motions round the sun is 365 days.

UNIT-IV

- 7. (a) Answer any three questions from the following: 1×3=3
 - (i) Define Young's modulus.
 - (ii) What is elasticity of a material?
 - (iii) What do you mean by elastic limit?
 - (iv) State Hooke's law.
 - (b) Answer any one question from the following:
 - (i) Define Poisson's ratio.
 - (ii) What is the work done in stretching a wire?

20J/1104

2

5

2

(6)

- 8. Answer either (a) or (b):
 - (a) Write a short note on torsional pendulum.
 - (b) Derive the expression relating three elastic constants. 2+3=5

UNIT--V

- **9.** (a) Answer any three questions from the following: 1×3=3
 - (i) What is the dimension of coefficient of viscosity of a liquid?
 - (ii) Write the Poiseuille's formula for the flow of a liquid through a capillary tube.
 - (iii) Define surface tension of a liquid.
 - (iv) Write the expression for sum of two relativistic velocities.
 - (b) Answer any one question from the following:
 - (i) What are the postulates of special theory of relativity?

2

(Continued)

(ii) Define coefficient of viscosity.

- 10. Answer either (a) or (b):
 - (a) Write short notes on (i) length contraction and (ii) time dilation. $2\frac{1}{2}+2\frac{1}{2}=5$
 - (b) Deduce the expression for excess pressure inside a spherical liquid drop. 5

20J—1170**/1104**