CENTRAL LIBRARY N.C.COLLEGE

2020/TDC (CBCS)/ODD/SEM/ CHMHCC-502T/294

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

CHEMISTRY

(5th Semester)

Course No.: CHMHCC-502T

(Physical Chemistry—V)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

- **1.** Answer any *ten* of the following questions: $2 \times 10 = 20$
 - (a) Write four important postulates of quantum mechanics.
 - (b) What do you mean by the term 'zero point energy'?

10-21**/231**

(Turn Over)

(2)

- (c) A hockey ball of mass 0.2 kg moving with a velocity of 3×10^3 ms⁻¹. If the ball can be located within an error equal to 600 nm, calculate the uncertainty in momentum of the ball as compared with the momentum of the ball itself.
- (d) Determine the degree of degeneracy of the energy level $\frac{17h^2}{8ma^2}$ of a particle of mass m in a 3D cubical box of length a.
- (e) Mention the important features of LCAO method for construction of molecular orbitals.
- (f) Mention two similarities and dissimilarities between valence bond method and molecular orbital method.
- (g) State and explain variation theorem.
- (h) Draw the molecular orbital diagram for HF molecule.
- (i) Explain Born-Oppenheimer approximation.

- (j) What is the moment of inertia of a diatomic molecule whose inter-nuclear distance is 150 pm and the reduced mass is 1.5×10⁻²⁷ kg?
- (k) Mention selection rules for vibrational transitions in a simple harmonic oscillator.
- (l) Explain the concept of group frequencies in vibrational spectroscopy.
- (m) Elucidate the rule of mutual exclusion.
- (n) What do you mean by Stokes and anti-Stokes lines?
- (o) Mention the differences between fluorescence and phosphorescence.
- (p) Explain the term 'chemical shift'.
- (q) What do you understand by photosensitized reaction? Give an example.

(4)

- (r) Write the different characteristics of electromagnetic radiation.
- (s) Explain the term 'quenching' with an appropriate example.
- (t) What do you understand by actinometry?

SECTION-B

Answer any five questions

- 2. State Heisenberg uncertainty principle.

 Verify the Heisenberg principle for the ground state of 1-D simple harmonic oscillator.

 1+5
- 3. (a) Solve the Schrödinger's wave equation for a particle of mass m confined in a 1-D box of length a and moving along x-axis.
 - (b) "The vibrational energy levels of a diatomic simple harmonic oscillator are equidistant." Explain with the help of a diagram.

- 4. (a) Write the Schrödinger wave equation for H-atom in (i) Cartesian coordinates (x, y, z) and (ii) spherical polar coordinates (r, θ, ϕ) and separate it into three equations.
 - (b) Calculate the most probable distance $(r_{\rm mp})$ of the electron from the nucleus.
- 5. Apply LCAO-MO theory to H₂⁺ ion to derive the secular determinant. Solve it to find the energy levels and the corresponding normalized wave functions.

 3+1½+1½
- 6. Derive an expression for the relational energy of a diatomic molecule, if it is a rigid rotator. Draw the energy level diagram. Also show that the energy difference between the adjacent lines in the rotational spectrum of a diatomic molecule is constant.

 3+1+2
- **7.** (a) With respect to vibration-rotation spectroscopy, explain the formation of *P*, *Q* and *R* branches.
 - (b) The fundamental vibrational frequency of HCl is 2890 cm⁻¹. Calculate the force constant of the molecule.

3

2

(b) Mention two limitations of Lambert-

		•	
8.	(a)	What are the requirements for a vibration to be (i) IR active and (ii) Raman active?	3
	(b)	Explain the terms (i) singlet and (ii) triplet with respect to electronic spectroscopy, taking suitable example.	3
9.	(a)	Discuss in detail the principle of nuclear magnetic resonance spectroscopy.	3
	(b)	Taking two suitable examples of organic molecules, explain their PMR spectra.	3
10.	(a)	State and explain the first law of photochemistry.	2
	(b)	Define quantum yield. What should be the quantum yield for primary processes in photochemical reaction?	2
	(c)	Explain the significance of absorption coefficients.	2
11.	(a)	State and explain second law of photochemistry.	2

	Beer law.	1			
(c)	On passing monochromatic light				
	through a $0.4 M$ solution of a substance				
	in a cell 2 cm thick, the intensity of the				
	transmitted light was reduced to 50%.				
	Calculate the molar extinction				
	coefficient of the substance.	3			

* * *