CENTRAL LIBRARY N.C.COLLEGE

2020/TDC(CBCS)/ODD/SEM/ CHMHCC-101T/285

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

CHEMISTRY

(1st Semester)

Course No.: CHMHCC-101T

or the same in the state of the same of

(Atomic Structure and Chemical Bonding)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- **1.** Answer any *ten* of the following questions: $2 \times 10 = 20$
 - (a) Mention two important limitations of Bohr's theory. 1+1=2
 - (b) State and explain Pauli's exclusion principle.

2

Notice of the Control of the Control

数据位。"。	ent of white grants			•	
(c)	Calculate the wavelength of 1000 kg rocket moving with a velocity of		(o)	Mention two important characteristics of van der Waals' forces.	્ટ 2
(d)	3000 km per hour ($\mu = 6.626 \times 10^{-34}$ Js). State and explain Aufbau principle.	2 2	(p)	The dipole moments of CO_2 and H_2O are different. Explain.	2
(e)	Mention four important characteristics of d -block elements.	=2	(q)	What do you mean by primary and secondary standard substances? Give	
(f)	What are meant by tetrahedral and octahedral covalent radii? 1+1	=2	()	examples of each type. What is meant by standard electrode	2
(g)	Explain why ionisation energy of neon is more than that of fluorine.	2	(r)	potential? Give examples.	2
(h)	covalent radius. Justify.	2	(s)	Which of the following species do not show disproportionation reaction and why?	
(i)	Draw the Lewis dot structures of (i) PO_4^{3-} , (ii) O_2^{2-} , (iii) SO_4^{2-} , (iv) H_2O_2 $\frac{1}{2}\times 4$	=2	(t)	ClO^- , ClO_2^- , ClO_3^- and ClO_4^- What is meant by formal electrode	2
. (j)	Mention two important postulates of valence bond theory for covalent bond.	-0		potential?	2
(fa)	1+1	=2		SECTION—B	ै
(k)	Explain why LiCl is soluble in organic solvents.	2		Answer any five questions	
<i>(1)</i>	He_2 does not exist but He_2^+ does. Explain.	2	2. (a)	State and explain Heisenberg's uncertainty principle.	2
(m)	Explain why H ₂ O is a liquid but H ₂ S is a gas.	2	(b)	State and explain normalised wave function.	2
(n)	Metals show lustre and malleable and ductile. Explain.	2	(c)	Explain the shapes of $2s$ and $2p$ orbitals in the light of angular wave function.	2

({**4**0)}

3.	(a)	What are quantum numbers? Explain		6.	(a)	Draw the MO energy level diagram of
í,	e e e e e e e e e e e e e e e e e e e	the significances of each quantum number.	2		()	CO molecule. Comment on its bond order and magnetic properties.
ę	(b)	Calculate the uncertainty in the velocity of an electron, if the uncertainty in its			(b)	Calculate the lattice energy of NaCl with the help of following data:
	(c)	position is of the order of $\pm 10^{\circ}$ pm. The mass of electron is $9 \cdot 11 \times 10^{-31}$ kg. State and explain orthogonal wave function	2			Electronic charge = $4 \cdot 8 \times 10^{-10}$ e.s.u. Born exponent = 9 Madelung constant for NaCl = 1.748 Ionic radius of Na ⁺ = 0.95 Å
		function.	2			Ionic radius of Cl = 1.81 Å
4.	(a)	Define electron gain enthalpy. Discuss the variation of electron gain enthalpy		7.	(a)	Discuss the structure of IF ₇ , NH ₃ and BeCl ₂ with the help of VSEPR theory.
		in group and period in s- and p-block elements of the periodic table. 1+2	2=3		(b)	Distinguish between bonding and anti- bonding molecular orbitals. What is meant by resonance energy? 2+1=3
	(b)	State Slater rules. Calculate the effective nuclear charge of 3d electron			(m)	
•		in Zn. 1+2	2=3	0.	(a)	What is meant by H-bonding? What are its different types? Cite suitable examples. Explain why water has
5.	(a)	covalent radius of $C = 0.77 \text{ Å}$,			. 11	maximum density at and minimum volume at 4 °C.
		$F = 0.72 \text{ Å}, \chi_C = 2.5, \chi_F = 4.0.$	2		(b)	
	(b)	Explain why halogens have highest electron gain enthalpies.	2	•	(~) ·	suitable examples.
	(c)	Explain the variation of electro-		9.	(a)	What is meant by intrinsic semi- conductor? What are its different types?
		negativity with partial charge, hybridization and bond order.	2		(b)	Explain with examples. State and explain Fajan's rules with
		•	. •	• •	•,	suitable examples.

CENTRAL LIBRARY N.C.COLLEGE

(6)

- 10. (a) Balance the following reactions by ionelectron method: 1½×2=3
 - (i) $KMnO_4 + FeSO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + MnSO_4 + K_2SO_4 + H_2O$
 - (ii) $Br_2 + NaOH \rightarrow NaBr + NaBrO_3 + H_2O$
 - (b) Explain the principle and write the redox reactions involved in volumetric quantification of Fe²⁺ by KMnO₄.
- 11. (a) Determine the cell e.m.f. at 25 °C for $Fe(s) + Cd^{2+}$ (aq) $\rightarrow Fe^{2+}$ (aq) + Cd(s)

where

$$[Cd^{2+}] = 1 \cdot 0 \ M \text{ and } [Fe^{2+}] = 0 \cdot 1 \ M$$

and

$$E^{\circ}_{\text{reg}} = -0.44 \text{ V}$$

$$E^{\circ}_{\text{Cd}^{2\dagger}/\text{Cd}} = -0.40 \text{ V}$$

3

(b) (i) Write the cell reaction and calculate the standard e.m.f. E° of the cell

Zn(s) |Zn²⁺ (aq) ||Cd²⁺ (aq) |Cd

Given

$$E_{Zn^{2+}/Zn}^{\circ} = -0.76V$$
 and $E_{Cd^{2+}/Cd}^{\circ} = -0.4V$

(ii) Calculate the oxidation no. of S in $H_2S_2O_5$ and $H_2S_2O_8$. 2+1=3

and of the wife of the off

 $\star\star\star$

2020/TDC(CBCS)/ODD/SEM/ CHMHCC-101T/285