CENTRAL LIBRARY N.C.COLLEGE

2018/TDC/ODD/CHMC-101T/077

TDC (CBCS) Odd Semester Exam., 2018

CHEMISTRY

(1st Semester)

Course No.: CHMHCC-101T

(Atomic Structure and Chemical Bonding)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 20)

Answer ten questions, taking two from each Unit

UNIT-I

1. Write the electronic configuration of (i) Cr^{3+} ion and (ii) Fe^{2+} ion. 1+1=2

(2)

2. Designate the orbitals bearing quantum numbers: 1+1=2

- (i) n=2, l=1
- (ii) n=3, l=2
- **3.** Atomic number of an element is 30. To which group, period and block of periodic table will it belong?

UNIT---II

- **4.** First ionization energy of N₂ is higher than that of O₂. Explain.
- 5. Which of the following elements has the lowest and which has the highest negative electron-gain enthalpy? 1+1=2

F, Cl, P, S

6. What is the difference between electron affinity and electronegativity?

UNIT-III

7. Write two important properties of ionic bond.

1+1=2

(Continued)

2

8. What is meant by 'resonance'?

(3)

9. Which of the following species are paramagnetic?

 H_2 , H_2^+ and H_2^-

UNIT-IV

- 10. Using Fajan's rule, explain that Ag₂S is much less soluble than Ag₂O.2
- 11. What is semiconductor? Mention the two main types of semiconductor. 1+1=2
- 12. Define hydrogen bond. Name the types of hydrogen bond.1+1=2

Unit--V

- 13. Explain the terms 'oxidizing agent' and 'reducing agent'. 1+1=2
- **14.** Arrange the following in decreasing order of oxidation number of nitrogen:

 N_2O , N_2O_4 , NO, N_2O_3

15. Name the redox indicators.

J9/1117

(Turn Over)

1+1=2

2

2

(5)

SEC	TIO	N—	-B
-----	-----	----	----

(Marks: 30)

Answer five questions, taking one from each Unit

UNIT-I

- **16.** (a) What is meant by atomic orbitals? Name various types of atomic orbitals. 1+1=2
 - (b) Mention one important application of the de Broglie concept.
 - (c) State Heisenberg's uncertainty principle.

 Calculate the product of uncertainty in position and velocity of an electron in SI unit.

 1+2=3
- 17. (a) Calculate the radius of first Bohr's orbit and energy of the electron of He⁺ in the ground state. (The absolute permittivity in vacuum is $8 \cdot 85 \times 10^{-12} \, \text{C}^2 \text{N}^{-1} \text{m}^{-2}$, Planck's constant $= 6 \cdot 625 \times 10^{-34} \, \text{Js}$, mass of electron $= 9 \cdot 1 \times 10^{-31} \, \text{kg}$ and charge of electron $= 1 \cdot 6 \times 10^{-19} \, \text{C}$)
 - (b) Why is the wave function ψ called orbital wave function?
 - (c) State Hund's rule of maximum multiplicity.

UNIT-II

- **18.** (a) What is meant by ionic radii? How do they differ from atomic radii? 1+2=3
 - (b) What do you mean by 'effective nuclear charge' of an atom? Calculate effective nuclear charge felt by a 2p electron of a nitrogen atom.

 1+2=3
- **19.** (a) Define electron affinity. Explain how it varies along a period and in a group.

 1+2=3

(b) Write a short note on Allred-Rochow electrostatic approach to electronegativity scale.

UNIT-III

- 20. (a) What is Born-Haber cycle? How can lattice energy of a solid be obtained with the help of it? 1+2=3
 - (b) Write the MO electronic configuration of CO and draw the MO energy level diagram for CO molecule. 1+2=3
- **21.** (a) Explain the concept of hybridization. Draw the shape of d^2sp^3 and dsp^2 hybrid orbitals. 1+1+1=3
 - (b) What are bonding and antibonding molecular orbitals? 1+1=2

J9/1117

(Continued)

1

3

1 ·

2

J9/1117

(Turn Over)

3

(6)

(c) How do you express bond strength in terms of bond order?

(c) What is stock notation? Give example

UNIT-IV

- **22.** (a) Explain the terms 'polarizing power' and 'polarisability' with suitable examples.
 - (b) What are weak interactions? Explain different types of van der Waals' interaction with suitable examples.
- 23. (a) What is Fajans' rule? Use Fajans' rule to predict the salt having lower melting point from KI and CuI. 1+2=3
 - (b) Calculate the percentage ionic character in HCl molecule if the observed dipole moment is 1.08D (bond length = 1.276 Å and $1D = 3.336 \times 10^{-30}$ cm).

UNIT-V

- **24.** (a) Define the term 'standard reduction potential'.
 - (b) Balance the following equations by ion-electron method: $1\frac{1}{2}+1\frac{1}{2}=3$ (i) $Cr(OH)_3+IO_3^-+OH^-\rightarrow I^-+CrO_4^{2-}+H_2O$
 - (ii) $Br_2 + NaOH \rightarrow NaBr + NaBrO_3 + H_2O$

		-

(7)

- 25. (a) What are redox reactions?
 - (b) Name the factors on which electrode potential depends. 2
 - (c) Explain the principle involved in the estimation of Fe²⁺ ion by KMnO₄. Write the necessary chemical reactions.

3

 $\star\star\star$

1

3

3

3

1

CENTRAL LIBRARY N.C.COLLEGE

2018/TDC/ODD/CHMC-102T/078

TDC (CBCS) Odd Semester Exam., 2018

CHEMISTRY

(1st Semester)

Course No.: CHMHCC-102T

(States of Matter and Ionic Equilibrium)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks
for the questions

SECTION—A

(Marks: 20)

Answer ten questions, taking two from each Unit

UNIT—1

- 1. Write two important postulates of kinetic theory of gases.
- 2. Calculate the most probable velocity of oxygen molecule at 27 °C.

(3)

3.	Define collision frequency and collis	ion	ł		Unit—4	
	diameter.	1+1=2			•	
				10.	State the law of rational indices.	2
	Unit—2				- · · · · · · · · · · · · · · · · · · ·	•
				11.	What are Bravais lattices?	2
4.	What are the causes of deviation of real g	gas		10	Define gloss and liquid amountal	1.1.0
	from ideal behaviour?	2		14.	Define glass and liquid crystal.	1+1=2
5.	What is Boyle's temperature? State the !	aw			Unit—5	
	of corresponding states.	1+1=2				
				13.	Define pH. Calculate the pH of 100 ml i	M/50
6.	Draw isotherms of carbon dioxide at	the			HCl solution.	1+1=2
	following temperatures:	½×4=2	•			
	(a) 13·1 °C	•	•	14.	Give the theory of acid-base indica	ators,
	(b) 21·5 °C				taking methyl orange as an example.	2
				15.	Give two applications of solubility pro	odust
			•		principle.	ે2
	(d) 35·5 °C		•		· ·	2
	Unit—3				SECTION—B	4 * \$
	UNII—3	_			(<i>Mark</i> s : 30)	÷
7.	Define angle of contact for a liquid the (a) wets glass and (b) does not wet glass.			Åns	swer five questions, taking one from ea	ch Unit
8.	What are surface active agents? G	ive			Unit—1	
	examples.	2				
			:	16.	Give an account of Maxwell's distributed for relacition. Freely, 11	
9.	Distinguish between Newtonian and no				of velocities. Explain graphically how velocity changes with temperature.	
	Newtonian liquids.	2			velocity changes with temperature.	4+2=6

17. Discuss the principle of equipartition of energy. Calculate the average internal energy of a diatomic molecule at 27 °C using law of equipartition of energy.

3+3=6

UNIT-2

- **18.** (a) Starting from van der Waals' equation, obtain an expression for critical constants in terms of van der Waals' constants a and b.
 - (b) The critical temperature and critical pressure of chlorine are 146 °C and 93.5 atm respectively. Calculate the values of van der Waals' constants a and b. Also find its critical volume.

2+1=3

3

3

- **19.** (a) Describe virial equation of state for real gases.
 - (b) What is the molar volume of N₂(g) at 500 K and 600 atm according to (i) the perfect gas law and (ii) the virial equation? Given the virial coefficient B of N₂(g) at 500 K is 0.0169 L mol⁻¹. 1+2=3

UNIT-3

20. (a) Describe drop number method for the determination of surface tension of a liquid using stalagmometer.

J9/1118

(b) Explain the cleansing action of soaps and detergents.

and detergents.

1. (a) Write Poiseuille's equation. Use this

- 21. (a) Write Poiseuille's equation. Use this equation to determine the relative viscosity of a liquid experimentally.

 Mention the name of the apparatus used for the purpose. 1+3+1=5
 - (b) Show that 1 Pa.s = 10 poise.

UNIT-4

- 22. Derive Bragg's equation. How can this equation be used to determine the structure of NaCl?

 4+2=6
- 23. Differentiate between Weiss and Miller indices. Calculate the Miller indices of crystal planes which cut through the crystal axes at—
 - (a) (2a, 3b, c);
 - (b) (6a, 3b, 3c);
 - (c) (2a, -3b, -3c).

3+3=6

UNIT-5

24. (a) Derive expressions for the hydrolysis constant, degree of hydrolysis and pH for hydrolysis of ammonium nitrate salt.

J9/**1118**

(Turn Over)

CENTRAL LIBRARY N.C.COLLEGE

(6)

- (b) Calculate the solubility of BaSO₄ at 298 K in (i) pure water and (ii) 0.05 (M)
 BaCl₂ solution. Given solubility product of BaSO₄ at 298 K is 1.5×10⁻⁹. 1+2=3
- **25.** (a) Derive Henderson equation for basic buffer solution. What is buffer capacity? 3+1=4
 - (b) Draw acid-base titration curves for—
 - (i) NaOH vs. HCl titration (conductometric);
 - (ii) CH_3COOH vs. KOH titration (conductometric). $1\times2=2$

* * *