CENTRAL LIBRARY N.C.COLLEGE

2021/TDC/CBCS/ODD/ MATHCC-501T/329

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

MATHEMATICS

(5th Semester)

Course No.: MATHCC-501T

(Topology)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions: 2×10=20

- 1. Define bounded metric space and give an example.
- 2. Show that in a discrete metric space every set is open.
- 3. Let X be a metric space and let G be an open set in X. Prove that $G \cap A = \emptyset$ if and only if $G \cap \overline{A} = \emptyset$.

22J/873

(Turn Over)

4.	Show	that	every	convergent	sequence	in	а
	metric space is a Cauchy sequence.						

- **5.** Give an example of a metric space which is not complete.
- **6.** Define continuity of a function in metric space.
- **7.** Define a topological space and give an example.
- 8. Define discrete and indiscrete topologies.
- **9.** Write two distinct topologies on $X = \{a, b, c\}$.
- 10. Define metrizable space.
- 11. Show with an example that the union of two topologies on a set may not be a topology.
- **12.** Define interior and exterior points of a set in a topological space.
- 13. Find the condition that a function f from topological spaces X to a topological space Y is not continuous at a point $x \in X$.
- 14. Define homeomorphism of a function in topological space.
- 15. Show that identity function is continuous.

SECTION—B

Answer any five of the following questions: 10×5=50

- 16. (a) Let X be a non-empty set. Show that the function $d: X \times X \to \mathbb{R}$ is a metric on X if and only if d satisfies the conditions—
 - (i) $d(x, y) = 0 \Leftrightarrow x = y \ \forall \ x, \ y \in X$;
 - (ii) $d(x, y) \le d(x, z) + d(y, z) \ \forall \ x, y, z \in X$.
 - (b) If (X, d) be a metric space and A is a subset of X, then show that \overline{A} is the smallest closed set containing A.
- 17. (a) Let $S(x_0, r)$ be an open sphere in a metric space (X, d). Prove that to each $p \in S(x_0, r)$ there exists r' > 0 such that $S(p, r') \subseteq S(x_0, r)$.
 - (b) Let A be a subset of a metric space (X, d). Prove that $\overline{A} = A \cup D(A)$.
- 18. (a) If x and y are two points of a metric space (X,d) such that the sequences $< x_n >$ and $< y_n >$ in (X,d) converges to x and y respectively, then prove that the sequence $< d(x_n,y_n) >$ converges to d(x,y).

5

5

5

5

5

(4)

(b) Let (X, d) and (Y, ρ) be metric spaces. Show that a function $f: X \to Y$ is continuous if and only if for every subset $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.

5

5

5

- 19. (a) Show that \mathbb{R} (with the usual metric) is a complete metric space.
 - (b) Let (X, d) and (Y, ρ) be metric spaces and $f: X \to Y$ a mapping. If f is continuous at $x \in X$, then show that for every open set $V \subseteq Y$ containing f(x), there exists an open set $U \subseteq X$ containing x such that $f(U) \subseteq V$.
- **20.** (a) Let \mathbb{N} be the set of all natural numbers and T the family of subsets of \mathbb{N} consisting ϕ and the sets of the form $T_n = \{n, n+1, n+2, \cdots\}, n \in \mathbb{N}$ Prove that T is a topology for \mathbb{N} .
 - (b) Let \mathbb{R} be the set of all real numbers and T the collection of all those subsets S of \mathbb{R} such that either $S = \emptyset$ or $S \neq \emptyset$, then for each $x \in S$ there exists a right half open interval H such that $x \in H \subseteq S$. Prove that T is a topology for \mathbb{R} .

21.	(a)	Show that an arbitrary intersection of				
		closed subsets of a topological space is a				
		closed set.				

- (b) Define upper limit topology on \mathbb{R} . Establish that it is a topology.
- **22.** (a) Show that the intersection of arbitrary collection of topologies on a set is also a topology.
 - (b) Show that every metric space is a topological space.
- **23.** (a) Let (X, T) be a topological space and $A \subseteq X$. Show that int(A) is the largest open subset of X containing A.
 - (b) Let A and B be any two subsets of a topological space. Prove that—
 - (i) $A \subseteq B \Rightarrow D(A) \subseteq D(B)$;
 - (ii) $D(A \cup B) = D(A) \cup D(B)$. 2+3=5
- **24.** (a) Let X and Y be topological spaces. Show that a function $f: X \to Y$ is continuous iff the inverse image under f of every open set in Y is open in X.

5

5

5

5

(6)

(b) Let T_1 and T_2 denote the discrete and usual topology respectively on \mathbb{R} . Show that the function $f:(\mathbb{R}, T_1) \to (\mathbb{R}, T_2)$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{if } x \in \mathbb{R} - Q \end{cases}$$

is continuous.

5

25. (a) Prove that $f: X \to Y$ is a homomorphism if and only if f is both continuous and open.

5

(b) Prove that a constant function from one topological space to another is continuous.

5

2021/TDC/CBCS/ODD/ MATHCC-502T/330

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

MATHEMATICS

(5th Semester)

Course No.: MATHCC-502T

(Multivariate Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: 2×10=20

1. Check if the limit exists

Lt
$$(x, y) \to (0, 0)$$
 $\frac{x^2 + xy}{2xy - y^2}$

(2)

(3)

2. Check the continuity of f at origin, where

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 1, & (x, y) = (0, 0) \end{cases}$$

- 3. Evaluate f_x and f_y if $f(x, y) = x^3 y + \sin(xy^2)$
- **4.** Define extreme value of a function of two variables. Give an example.
- 5. Find the stationary points of

$$f(x, y) = y^2 + 4xy + 3x^2 + x^3$$

6. Can you mention an extreme value of the following function?

$$f(x, y) = |x| + |y|, (x, y) \in \mathbb{R}^2$$

Justify your answer.

7. For the function

$$\vec{F} = yz^2\hat{i} + xy\hat{j} + yz\hat{k}$$

verify that div curl $\vec{F} = 0$.

8. Evaluate

$$\iint (x+y)\,dx\,dy$$

over the area bounded by the lines y = x, x = 3 in the first quadrant.

9. Sketch the region of integration for the integral

$$\int_0^\pi \int_0^{\sin x} y \, dy \, dx$$

- 10. Compute the Jacobian of transformation from Cartesian to spherical polar coordinates.
- 11. Change the order of the integration

$$\int_0^1 dx \int_x^{\sqrt{x}} f(x, y) dy$$

12. Evaluate the line integral

$$\int_C xy dx$$

where C is the arc of the parabola $x = y^2$ from (1, -1) to (1, 1).

13. State Green's theorem in \mathbb{R}^2 .

(5)

- 14. Using Green's theorem, deduce the expression for area of a domain bounded by a contour C regular with respect to both the axes.
- 15. State Gauss' divergence theorem.

SECTION—B

Answer any five of the following questions: 10×5=50

16. (a) Show that if f and g are two functions defined on some neighbourhood of (a, b) such that

Lt
$$f(x, y) \rightarrow (a, b)$$
 $f(x, y) = l$ and Lt $g(x, y) \rightarrow (a, b)$

then

Lt
$$(x, y) \to (a, b)$$
 $(f + g)(x, y) = l + m$ 5

(b) Show that the function f is continuous, where

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

17. (a) Show that the function

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

possesses both the partial derivatives at (0, 0) but is not differentiable at (0, 0).

5

5

(b) Define directional derivative of a function of two variables at a point (a, b) in the direction of unit vector \hat{u} . Derive the directional derivative of

$$f(x, y) = x^2 + y^2$$

at (a, b) in the direction of unit vector $\hat{u} = u_1 \hat{i} + u_2 \hat{j}$. 2+3=5

18. (a) Investigate the function

$$f(x, y) = 2x^4 - 3x^2y + y^2$$

for extreme values.

Find the shortest distance from the origin to the hyperbola

$$x^2 + 8xy + 7y^2 = 225, z = 0$$
 5

19. (a) If 2x+3y+4z=a, show that the maximum value of $x^2y^3z^4$ is $\left(\frac{a}{9}\right)^9$.

(6)

(b) Find an extreme value of the function

$$f(x, y) = x^2 + 3xy + y^2 + x^3 + y^3$$

5

20. (a) Evaluate

$$\iint\limits_{R} \frac{dx\,dy}{(x+y+1)^2}$$

over the rectangle R = [0, 1; 0, 1].

5

5

5

(Continued)

(b) Evaluate

$$\iint\limits_{R} (x^2 + y^2) \, dx \, dy$$

over the region R bounded by the parabolas $y = x^2$ and $y^2 = x$.

21. (a) Evaluate

$$\iint_C x^3 y^2 dx dy$$

where C is the circular disc $x^2 + y^2 \le a^2$.

(b) Using double integration, show that the area of a circle of radius r is πr^2 .

(7)

22. (a) Compute the integral

$$\iiint\limits_{E} xyzdx\,dy\,dz$$

where E is bounded by x = 0, y = 0, z = 0, x + y + z = 1.

(b) Compute the volume of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

5

5

5

5

23. (a) Find the line integral

$$\int_C (x-y)^3 dx + (x-y)^3 dy$$

where C is the circle $x^2 + y^2 = a^2$ in counterclockwise direction.

b) Evaluate

$$\iint\limits_{\mathbb{R}} f(x, y) \, dy \, dx$$

over the rectangle R = [0, 1; 0, 1], where

$$f(x, y) = \begin{cases} x + y, & x^2 < y < 2x^2 \\ 0, & \text{elsewhere} \end{cases}$$

24. (a) Compute the line integral

$$\int_C (1-x^2)y \, dx + (1+y^2)x \, dy$$

where C is $x^2 + y^2 = a^2$, using Green's theorem.

CENTRAL LIBRARY N.C.COLLEGE

(8)

(b) Evaluate the surface integral

$$\iint_{S} x \, dy \, dz + dz \, dx + xz^{2} dx \, dy$$

where S is the outer part of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

5

5

25. (a) Apply Stokes' theorem to evaluate

$$\int_C y dx + z dy + x dz$$

where C is the curve

$$x^2 + y^2 + z^2 - 2ax - 2ay = 0$$
, $x + y = 2a$ 5

(b) Use Gauss' divergent theorem to evaluate

$$\iint_{S} y^{2}z dx dy + xz dy dz + x^{2}y dz dx$$

where S is the outer side of the surface in first octant formed by the paraboloid of revolution $z = x^2 + y^2$, cylinder $x^2 + y^2 = 1$ and the coordinate planes.
