CENTRAL LIBRARY N.C.COLLEGE

2020/TDC(CBCS)/ODD/SEM/ MTMSEC-501T/333D

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

MATHEMATICS

(5th Semester)

Course No.: MTMSEC-501T

(Integral Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any fifteen questions:

1×15=15

1. Write down the value of

$$\int \frac{f'(x)}{f(x)} \, dx$$

2. Write down the value of

$$\int \frac{dx}{x^2 + a^2}$$

10-21/399

(Turn Over)

(2)

3. If

$$\frac{d}{dx}[f(x)] = F(x)$$

then find the value of $\int F(x) dx$.

4. Find the value of

$$\frac{d}{dx} [\int f(x) \, dx]$$

- **5.** Write down the value of $\int a^x dx$.
- 6. Write down the value of

$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$

- 7. If f(x) is even, then what is the value of $\int_{-a}^{a} f(x) dx$?
- 8. Write down the value of

$$\int_{-\pi/2}^{\pi/2} \sin^3 x \, dx$$

9. Write True or False:

$$\int_0^{\pi/2} \log(\sin x) \, dx = \int_0^{\pi/2} \log(\cos x) \, dx$$

10-21/**399** (Continued)

10. Find

$$\int_{-1}^{0} |x| \, dx$$

11. Find the value of

$$\int_{-a}^{a} x \, \phi(x^2) \, dx$$

- 12. Express $\int_a^b f(x) dx$ as limit sum.
- 13. Write down the reduction formula for $\int_0^{\pi/2} \sin^n x \, dx$, when *n* is odd.
- 14. Write down the reduction formula for $\int_0^{\pi/2} \cos^n x \, dx$, when *n* is even.
- 15. Write True or False:

$$\int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \cos^n x \, dx$$

- **16.** Find the value of $\int_0^{\pi/2} \sin^4 x \, dx$ by using reduction formula.
- 17. If $\phi(n) = \int_0^{\pi/4} \tan^n x \, dx$, what is the value of $\phi(n) + \phi(n-2)$?

- **18.** Write down the reduction formula for $\int \sec^n x \, dx$.
- 19. Write down the geometrical interpretation of $\int_a^b f(x) dx$.
- **20.** Write down the parametric equation of circle $x^2 + y^2 = r^2$.
- **21.** Write down the parametric equation of astroid $x^{2/3} + y^{2/3} = a^{2/3}$.
- **22.** Write down the formula of length in Cartesian form.
- **23.** Write down the formula of length in parametric form.
- **24.** What is the length of circumference of a circle of radius a?
- **25.** What is the surface area of the sphere of radius a?
- **26.** What is the volume of the solid generated by the curve y = f(x), intercepted between x = a and x = b and the axis of revolution about x-axis?

- **27.** What is the surface area of the solid generated by the curve x = f(y), intercepted between y = a and y = b and the axis of revolution about y-axis?
- **28.** What is the volume of the sphere generated by the rotation of the circle $x^2 + y^2 = 4a^2$?
- 29. What is the volume of the solid generated by the revolution of the area bounded by the curve $r = f(\theta)$ and radii vectors $\theta = \theta_1$, $\theta = \theta_2$ and revolution about initial line $\theta = 0$?
- **30.** What is the volume of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis and bounded by the section x = h?

SECTION-B

Answer any five questions:

 $2 \times 5 = 10$

31. Evaluate:

$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx$$

32. Evaluate:

$$\int \frac{e^{\sqrt{x}}\cos(e^{\sqrt{x}})}{\sqrt{x}}\,dx$$

CENTRAL LIBRARY N.C.COLLEGE

(6)

33. Prove that

$$\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx$$

34. Prove that

$$\int_0^{\pi/2} \log (\tan \theta) \ d\theta = 0$$

- **35.** If $I_n = \int_0^{\pi/2} \sin^n x \, dx$, n > 1, then prove that $I_n = \frac{n-1}{n} I_{n-2}$
- 36. If $I_n = \int \tan^n x \, dx$, n > 1, then prove that $I_n = \frac{\tan^n x}{n-1} I_{n-2}$
- 37. Find the length of the curve $x = e^{\theta} \sin \theta$, $y = e^{\theta} \cos \theta$; $\theta = 0$ and $\theta = \pi/2$.
- **38.** Find the length of the curve $r = \theta^2$; $\theta = 0$ and $\theta = \sqrt{5}$.
- **39.** Find the volume generated by revolving about x-axis, the area bounded by $y = \cos x$ between x = 0 and $x = \pi/2$.
- **40.** Find the surface area generated by revolving about y-axis, the area bounded by $y = x^2$ between y = 0 and $y = \sqrt{2}$.

10-21**/399**

(Continued)

(7)

SECTION-C

Answer any five questions:

5×5=25

41. Evaluate:

$$\int (\sqrt{\tan x} + \sqrt{\cot x}) \, dx$$

42. Evaluate:

$$\int \frac{dx}{x^4 + a^2}$$

43. Prove that

$$\int_0^{\pi/2} \log(\sin x) \, dx = \frac{\pi}{2} \log \frac{1}{2}$$

44. Evaluate:

$$\lim_{n\to\infty} \left[\left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \cdots \left(1 + \frac{n^2}{n^2} \right) \right]^{1/n}$$

- **45.** If $u_n = \int_0^{\pi/2} x^n \sin x \, dx$, n > 1, then prove that $u_n + n(n-1)u_{n-2} = n(\frac{\pi}{2})^{n-1}$.
- **46.** If $I_{m,n} = \int_0^{\pi/2} \sin^m x \cos^n x \, dx$; m, n being positive integers greater than 1, then prove that

$$I_{m,n} = \frac{n-1}{m+n} I_{m,n-2}$$

10-21/399

(Turn Over)

(8)

- **47.** Find the total length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.
- **48.** Find the length of an arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$.
- **49.** Find the area of the surface generated by the arc of the parabola $y^2 = 4ax$ bounded by its latus rectum about x-axis.
- **50.** Find the volume of the ellipsoid by the revolution of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

about the major axis.

 $\star\star\star$