2020/TDC (CBCS)/ODD/SEM/ MTMHCC-302T/328

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

MATHEMATICS

(3rd Semester)

Course No.: MTMHCC-302T

(Group Theory)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

- 1. Answer any *ten* of the following questions: $2 \times 10 = 20$
 - (a) Define binary operation on a set. Give an example of a binary operation.
 - (b) Is {-1, 0, 1} a group under addition operation? Justify your answer.

- (c) Define a quaternion group.
- (d) If G be a group, then show that $ab = ac \Rightarrow b = c$ a, b, $c \in G$
- (e) Define product of two subgroups of a group. Give an example of a subgroup.
- (f) What do you mean by the centre of a group?
- (g) Is the union of two subgroups of a group a subgroup of the group? Justify your answer.
- (h) If H is any subgroup of a group G, then prove that $H^{-1} = H$. Is the converse true?
- (i) Define a cyclic group. Give one example.
- (j) If a is a generator of a cyclic group G, then prove that a^{-1} is also a generator of G.
- (k) Define alternating group.
- (l) When is a permutation said to be even or odd permutation?
- (m) What do you mean by the external direct product of two groups?
- (n) Define factor group.

- (o) Is the converse of Lagrange's theorem true? Justify your answer.
- (p) When is a left coset equal to the corresponding right coset?
- (q) When are two groups said to be isomorphic?
- (r) Let G and G' be two groups and $f: G \to G'$ be an isomorphism. If $e \in G$ is the identity element of G, then show that $f(e) \in G'$ is the identity element of G'.
- (s) Show that the relation of isomorphism in the set of all groups is reflexive and symmetric.
- (t) If $G \to G'$ is an isomorphism, then show that the order of an element a of G is equal to the order of its image f(a).

SECTION-B

Answer any five questions

2. (a) If

$$G = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \text{ is any non-zero real number} \right\}$$

then show that G is a commutative group under matrix multiplication.

5

(4)

(b) Show that the set P_n of all permutations on n symbols is a finite group of order n with respect to composite of mappings as operation. Also, show that for $n \le 2$, the group is Abelian and for n > 2, it is always non-Abelian.

3. (a) Prove that the set of all *n*-th roots of unity forms a finite Abelian group of order *n* with respect to the operation of multiplication.

(b) Show that multiplication of permutations is not commutative, in general.

(c) If a and b are two elements of a group G, then show that the equations ax = b and ya = b have unique solutions in G.

4. (a) If H and K are two subgroups of a group G, then show that HK is a subgroup of G iff HK = KH.

(b) Define normalizer of an element of a group. Show that it is a subgroup of the group.

1+4=5

- 5. (a) Show that the union of two subgroups of a group is a subgroup iff one is contained in the other. Give example of two subgroups whose union is not a subgroup.

 4+1=5
 - (b) Prove that a non-empty subset H of a group G is a subgroup of G iff $a, b \in H \Rightarrow ab \in H$ and $a \in H \Rightarrow a^{-1} \in H$, where a^{-1} is the inverse of a in G.
- 6. (a) Define cyclic permutation. Write the following permutation as the product of disjoint cycles:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8
\end{pmatrix}$$

Is it an even permutation? 1+2+1=4

- (b) How many generators are there in a cyclic group of order 8?
- (c) Give an example of a finite Abelian group which is not cyclic.
- 7. (a) Prove that every group of prime order is cyclic.

3

3

5

3

3

5

(7)

(b) Define identity permutation. Find the inverse of the permutation

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$

- (c) Show that every subgroup of a cyclic group is cyclic.
- 8. (a) State and prove Lagrange's theorem.
 1+4=5
 - (b) Prove that a subgroup H of a group G is a normal subgroup iff the product of two right cosets of H in G is again a right coset of H in G.
- 9. (a) Show that any two left cosets of a subgroup of a group is either disjoint or identical.
 - (b) If H is a subgroup of a group G and $h \in H$, then show that Hh = H = hH.
 - (c) If H is a subgroup of a group G and N is a normal subgroup of G, then show that $H \cap N$ is a normal subgroup of H.

- 10. (a) State and prove Cayley's theorem. 1+4=5
 - (b) If \mathbb{R} is the additive group of real numbers and \mathbb{R}_+ is the multiplicative group of positive real numbers, then prove that the mapping $f: \mathbb{R} \to \mathbb{R}_+$ defined by $f(x) = e^x \ \forall x \in \mathbb{R}$ is an isomorphism of \mathbb{R} onto \mathbb{R}_+ .

5

- 11. (a) State and prove the first theorem on isomorphism. 1+4=5
 - (b) Define group homomorphism. If f is an isomorphism from a group G onto a group G', then show that f^{-1} is also an isomorphism from G' onto G. 1+4=5

 $\star\star\star$