2019/TDC/ODD/SEM/MTMHCC-301T/175

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(3rd Semester)

Course No.: MTMHCC-301T

(Theory of Real Functions)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two of the following questions:

2×2=4

(a) If
$$\underset{x\to c}{\text{Lt}} f(x) = l$$
, then prove that

$$\operatorname{Lt}_{x \to c} |f(x)| = |l|$$

(b) Prove that

$$\underset{x\to 1}{\text{Lt}} x^{\frac{1}{1-x}} = \frac{1}{e}$$

(c) State sequential criterion for limits.

20J/1208

(Turn Over)

(3)

- **2.** Answer either [(a) and (b) or [(c) and (d) :
 - (a) If

$$\lim_{x \to 0} \frac{x^a \sin^b x}{\sin x^c}$$

where $a, b, c \in R - \{0\}$ exist and has non-zero values, then show a+b=c.

(i) If $f(x) \le g(x) \le h(x)$ in a certain (b) neighbourhood of the point c and

$$\operatorname{Lt}_{x\to c} f(x) = l = \operatorname{Lt}_{x\to c} h(x)$$

then prove that

- (ii) Prove that the limit of a function, if it exists, is unique.
- (c) If

$$\underset{x\to a}{\operatorname{Lt}} f(x) \text{ and } \underset{x\to a}{\operatorname{Lt}} g(x)$$

exist finitely, then prove that

$$\underset{x\to a}{\operatorname{Lt}} \{ f(x) \cdot g(x) \} = \underset{x\to a}{\operatorname{Lt}} f(x) \cdot \underset{x\to a}{\operatorname{Lt}} g(x)$$

3 (i) Evaluate: (d) $\lim_{x \to \frac{1}{a}+} x \left[\frac{1}{x} \right]$

(ii) Using definition of limit, show that

$$\underset{x\to 0}{\operatorname{Lt}} x^2 \sin \frac{1}{x} = 0$$

3

Unit—II

Answer any two of the following questions:

 $2 \times 2 = 4$

- Give an example of a bounded function which is discontinuous at every point of its domain.
- What must be the value of f(0) so that $f(x) = (x+1)^{\cot x}$ becomes continuous at x = 0?
- Define the following terms:
 - (i) Removable discontinuity
 - (ii) Discontinuity of first kind
- **4.** Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Prove that a function f defined on an interval I is continuous at a point c in Iif and only if for any sequence $\langle c_n \rangle$ in Iconverging to c the sequence $\langle f(c_n) \rangle$ converging to f(c), i.e.,

$$c_n \to c \Rightarrow \langle f(c_n) \rangle \to f(c)$$

as $n \to \infty$.

20J/1208

5

(Continued)

3

(5)

(b) Show that the function

$$f(x) = |x| + |x-1| + |x-2|$$

is continuous at points x = 0, 1, 2.

5

3

3

- (c) State and prove intermediate value theorem.
- (d) (i) Show that the function f defined on R

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

is discontinuous at every point.

(ii) Show that the function f defined as f(x) = x - [x], where [x] denotes the integral part of x is discontinuous for all integral values of x.

UNIT-III

- 5. Answer any two of the following: $2\times2=4$
 - (a) State Rolle's theorem.
 - (b) State Darboux's theorem.
 - (c) Let f and g be two functions with the same domain D. Give an example to show that if fg is derivable at $C \in D$, then f and g are not necessarily so at C.

- **6.** Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) State and prove Carathéodory's theorem.
 - (b) (i) Show that the function f(x) = x|x| is derivable at origin.
 - (ii) Suppose f and g are continuous in [a, b] and differentiable on (a, b). If $f'(x) = g'(x) \ \forall x \in (a, b)$, then prove that there exists a constant K such that f = g + k on [a, b], i.e., f and g differ by a constant on [a, b].
 - (c) A function f is defined on R as follows:

$$f(x) = \begin{cases} \frac{x(e^{\frac{1}{x}} - e^{-\frac{1}{x}})}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Find Lf'(0) and Rf'(0). Is f derivable at x = 0?

(d) (i) If a function f is derivable at a point c and $f(c) \neq 0$, then show that function $\frac{1}{f}$ is also derivable at c and

$$\left(\frac{1}{f}\right)(c) = \frac{-f'(c)}{\left\{f(c)\right\}^2}$$

4

3

3

4

(6)

(ii) Prove that, if

$$\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_n-1}{2+a_n} = 0$$

where $a_0, a_1, \dots, a_{n-1}, a_n$ are real numbers, then the equation

$$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$$

has at least one real root between 0 and 1.

UNIT-IV

- **7.** Answer any *two* of the following: $2\times2=4$
 - (a) Define uniform continuity of a function in a domain.
 - (b) Prove that $f(x) = \sin x$ is uniformly continuous on R.
 - (c) Define Lipschitz's function.
- **8.** Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Prove that a function which is continuous in a closed and bounded interval [a, b] is uniformly continuous in [a, b].
 - (b) If $f: A \to R$ is uniformly continuous on a subset A on R and if $\langle x_n \rangle$ is a Cauchy sequence in A, then prove that $\langle f(x_n) \rangle$ is a Cauchy sequence in R.

(7)

(c) (i) Show that the function

$$f(x) = x^2 \ \forall \ x \in R$$

is uniformly continuous on [-1, 1] but not in R.

- (ii) If $f:A \to R$ is a Lipschitz function, then f is uniformly continuous on A.
- (d) Show that the function f defined as

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is not uniformly continuous on [0, ∞).

UNIT-V

- 9. Answer any two of the following: 2×2=4
 - (a) State Maclaurin's theorem with Lagrange's form of remainder.
 - (b) State Cauchy's mean value theorem.
 - (c) Suppose f is continuous on [a, b] and differentiable on (a, b),

$$f'(x) = 0 \ \forall x \in (a, b)$$

then show that f is constant on [a, b].

3

5

5

٠.

3

(8)

- 10. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Using Cauchy's mean value theorem for the functions $f(x) = e^x$ and $g(x) = e^{-x}$ show that there exists a point c in (a, b) such that c is the arithmetic mean between a and b.

(b) State and prove Taylor's theorem with Lagrange's form of remainder.

(c) If f'' is continuous at x = a, then show that

$$\underset{h \to 0}{\text{Lt}} \left[\frac{f(a+h) - 2f(a) + f(a-h)}{h^2} \right] = f''(a)$$

(d) (i) Using Taylor theorem, show that $x - \frac{x^6}{6} < \sin x < x, \text{ for } x > 0$

(ii) Explain why \sqrt{x} and $x^{5/2}$ cannot be expanded in Maclaurin's infinite series.

5

5

CENTRAL LIBRARY N.C.COLLEGE

2019/TDC/ODD/SEM/MTMHCC-302T/176

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(3rd Semester)

Course No.: MTMHCC-302T

(Group Theory)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) Define group with example.
- (b) What do you mean by the order of an element of a group? What is the order of an infinite group?
- (c) Define a semigroup. Is it a group?

(3)

- 2. Answer either (a) and (b) or (c) and (d):
 - (a) Show that the set M of all complex numbers z such that |z| = 1 form a group w.r.t. the operation of multiplication of complex numbers. Is it abelian? 4+1=5
 - (b) Consider the permutations

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

Compute f * g, g * f and f^{-1} . 2+2+1=5

- (c) Prove that the set of all nth roots of unity forms a finite abelian group of order n w.r.t. multiplication.
- (d) Define symmetric group. Show that the symmetric group S_3 is non-abelian. What is the order of S_n ? 1+3+1=5

UNIT--II

3. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) What is the index of a subgroup of a group?
- (b) Write two subgroups of \mathbb{Z} under addition.
- (c) Is the union of two subgroups a subgroup? Justify your answer.

- 4. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Define inverse of a complex. If H is a subgroup of a group G, then show that $H^{-1} = H$. Also show that the converse is not true. 1+2+2=5
 - (b) What do you mean by the product of two subgroups of a group? Show that the product of two subgroups H and K of a group G is a subgroup iff HK = KH.

1+4=5

- (c) What is the normalizer of an element of a group? Prove that the centre of a group G is a subgroup of G. 2+3=5
- (d) Prove that the necessary and sufficient condition for a nonempty subset H of a group G to be a subgroup is that $ab^{-1} \in H$, where $a, b \in H$ and b^{-1} is the inverse of b in G.

UNIT-III

5. Answer any two of the following questions:

2×2=4

5

- (a) What are the generators of the cyclic group $\{1, -1, i, -i\}$?
- (b) Define alternating group. What is its order?
- (c) What is the length of an identity permutation? Is it cyclic?

20J/1209

(Turn Over)

(4)

6. Answer either [(a) and (b) or [(c) and (d):

- (a) Define a cyclic group. How many generators are there of a cyclic group of order 8? 2+3=5
- (b) When are two cyclic permutations said to be disjoint? Give an example to show that the product of two disjoint cyclic permutations on a set commute with each other.

 2+3=5
- (c) Prove that—
 - (i) every group of prime order is cyclic;
 - (ii) if a is a generator of a cyclic group G, then a^{-1} is also a generator of G. 3+2=5
- (d) What do you mean by even and odd permutations? Give one example of each. Is the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ odd or even? 2+2+1=5

UNIT-IV

7. Answer any two of the following questions:

 $2\times2=4$

- (a) Define a factor group.
- (b) Define normal subgroup with example.
- (c) Define simple group and give an example of it.

- 8. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) State and prove Lagrange's theorem.

1+4=5

3

- (b) (i) Show that every subgroup of a cyclic group is normal.
 - (ii) Show that the factor group of an abelian group is abelian. 2
- (c) Define right coset and left coset of a subgroup of a group. When are they same? Show that any two right cosets are either disjoint or identical. 1+1+3=5
- (d) If H and K are two subgroups of a group G and H is normal in G, then prove that HK is a subgroup of G and $H \cap K$ is a normal subgroup of K.

UNIT-V

9. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) What do you mean by group homomorphism?
- (b) Show that the homomorphic image of an abelian group is abelian.
- (c) Let G and G' be two groups and $f: G \to G'$ be a homomorphism. Then show that $f(a^{-1}) = [f(a)]^{-1}$, $\forall a \in G$.

CENTRAL LIBRARY N.C.COLLEGE

(6)

- 10. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Define kernel of a homomorphism. If $f: G \to G'$ be a homomorphism, then show that kernel of f is a normal subgroup of G. 1+4=5
 - (b) State and prove Cayley's theorem. 1+4=5
 - (c) Write down the identity element of a quotient group. Show that any infinite cyclic group is isomorphic to the group of integers under addition. 1+4=5
 - (d) State and prove the fundamental theorem of homomorphism. 1+4=5

* * *

2019/TDC/ODD/SEM/ MTMHCC-303T/177

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(3rd Semester)

Course No.: MTMHCC-303T

(PDE and Systems of ODE)

Full Marks: 50 Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- **1.** Answer any *two* questions from the following: 2×2=4
 - (a) Find a partial differential equation by eliminating a and b from the equation $z = (x-a)^2 + (y-b)^2$.
 - (b) If z = f(x at) + F(x + at), show that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial x^2}$
 - (c) Solve the equation $\frac{\partial z}{\partial x} + 2yz = y \sin x$

(2)

(3)

2. (a) Form a partial differential equation by eliminating the arbitrary function ϕ from $\phi(x+y+z, x^2+y^2+z^2)=0$. What is the order of this partial differential equation?

6

Or

(b) Solve the following equations: 3+3=6

(i)
$$x \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y} = 4x + 2y + z$$

(ii)
$$\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = 2x$$

UNIT-II

3. Answer any two of the following: 2×2=4

- (a) Solve by using Lagrange's method $2\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial u} = 1$
- (b) Solve by using the method of separable variables:

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial u} = 0$$

(c) Find the characteristics of the first order linear partial differential equation

$$x^2 \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} + xyz = 1$$

4. (a) Solve:

4+2=6

3

3

(i)
$$x(y^2+z)\frac{\partial z}{\partial x} - y(x^2+z)\frac{\partial z}{\partial y} = z(x^2-y^2)$$

(ii)
$$yz\frac{\partial z}{\partial x} + zx\frac{\partial z}{\partial y} = xy$$

Or

(b) (i) Solve by using the method of separation of variables:

$$\frac{\partial^2 z}{\partial x \partial y} + 9x^2y^2z^2 = 0$$

(ii) Find the integral surface of the partial differential equation:

$$4yz\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} + 2y = 0$$

Passing through the curve $y^2 + z^2 = 1$, x + z = 2.

UNIT-III

5. Answer any two of the following: 2×2=4

(a) Solve $(D^2 + 2DD' + D'^2)z = 0$, where $D = \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.

(4)

(b) Find the particular integral of the partial differential equation

$$(D^2 + D'^2)z = x + y$$

where
$$D \equiv \frac{\partial}{\partial x}$$
 and $D' \equiv \frac{\partial}{\partial y}$.

(c) Find the characteristics of the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$$

6. (a) Find the canonical form of the partial differential equation:

$$\frac{\partial^2 z}{\partial x^2} - 9 \frac{\partial^2 z}{\partial y^2} = 0$$

and hence solve it.

Or:

(b) Solve:

$$(D^2 - 6DD' + 9D'^2)z = 12x^2 + 36xy,$$

where
$$D \equiv \frac{\partial}{\partial x}$$
 and $D' \equiv \frac{\partial}{\partial z}$

UNIT-IV

7. Answer any two of the following:

(a) Solve by using the method of separation of variables:

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0, \ u(x,0) = 4e^{-x}$$

(b) Give interpretation of the variables x, t and u in the heat conduction equation

$$\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2}$$

- (c) Define homogeneous and non-homo geneous boundary condition of a second order partial differential equation.
- 8. (a) Derive wave equation on a stretched string.

Or

(b) Solve the following initial boundary value problem of one-dimensional heat conduction equation by the method of separation of variables:

$$\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2}, \ 0 < n < L, \ 0 < t < \infty$$

$$u(x, 0) = f(x), \ 0 < x < L$$

$$u(0, t) = u(L, t) = 0, \ 0 < t < \infty$$

2×2=4

6

6

б

CENTRAL LIBRARY N.C.COLLEGE

(6)

UNIT-V

9. Answer any two of the following:

2×2=4

- (a) Define a differential operator.
- (b) What is the normal form of a homogenous system of linear ordinary differential equation?
- (c) What is the matrix form of a system of non-homogeneous system of linear ordinary differential equation?
- 10. Solve (any one):

6

(a)
$$\frac{dx}{dt} + 2x - 3y = t$$
$$\frac{dy}{dt} - 3x + 2y = e^{2t}$$

(b)
$$\frac{dx}{dt} - 7x + y = 0$$
$$\frac{dy}{dt} - 2x - 5y = 0$$

k * *