CENTRAL LIBRARY N.C.COLLEGE

2020/TDC(CBCS)/ODD/SEM/ MTMDSC/GE-101T/326

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

MATHEMATICS

(1st Semester)

Course No.: MTMDSC/MTMGE-101T

(Differential Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any twenty questions:

1×20=20

- 1. What is the difference between x = a and $x \rightarrow a$?
- 2. $\lim_{x\to 2} \frac{x^2-4}{x-2} = ?$

(3)

3. Write the value of

$$\underset{x\to a}{\operatorname{Lt}} \frac{x^n - a^n}{x - a}$$

where n is rational and a > 0.

$$4. \quad \lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = ?$$

5.
$$\lim_{x\to 0} \frac{\log(1+x)}{x} = ?$$

6.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = ?$$

7. Does $\lim_{x\to 0} \sin \frac{1}{x}$ exist?

8.
$$\lim_{x\to 0} \frac{(1+x)^n-1}{x} = ?$$

- **9.** What is removable discontinuity of a function at a point?
- 10. What is discontinuity of first-kind of a function at a point?

- 11. What is discontinuity of second-kind of a function at a point?
- 12. Is the function $\cos \frac{1}{x}$ continuous at x = 0?
- 13. What is/are the point/points of discontinuity of the function $\frac{x^2-9}{x-3}$?
- 14. What are the points of discontinuity of the greatest integer function [x]?
- **15.** Define differentiability of a function at a point.
- 16. Is the function

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

differentiable at x = 0?

- 17. What is the *n*th derivative of x^n ?
- 18. What is the *n*th derivative of e^{ax} ?

(4)

- 19. What is the *n*th derivative of $\sin 2x$?
- **20.** Find $\frac{d^2y}{dx^2}$, if $y = \log \frac{1}{x}$.
- **21.** State Leibnitz theorem on *n*th derivative of the product of two functions.
- **22.** Find y_5 , if $y = x^{10}$.
- **23.** Find $\frac{\partial z}{\partial x}$, where $z = e^{\sin^2}(x^2 + y^2)$.
- **24.** Define a homogeneous function of two variables.
- **25.** What is the geometrical meaning of the derivative of a function at a point?
- **26.** What is the equation of the normal to a curve at a given point?
- 27. What is the angle of intersection of two curves?

- 28. Write down the formula for Cartesian subtangent to a curve.
- **29.** Define $tan \phi$, where ϕ is the angle between the radius vector and the tangent.
- 30. Define curvature of a curve at a given point.
- 31. Write down the formula for radius of curvature of a curve $r = f(\theta)$ at any point θ .
- 32. Draw a sketch of the cardioid $r = a(1 + \cos \theta)$.
- 33. Interpret Rolle's theorem geometrically.
- 34. State Lagrange's mean value theorem.
- **35.** What is Cauchy's form of remainder in Taylor's theorem?
- 36. State Maclaurin's infinite series.
- 37. Obtain the stationary points for the function $f(x) = 2x^3 21x^2 + 36x 20.$

(7)

(6)

- **38.** What is the minimum value of $\sin^2 x$?
- **39.** What is the maximum value of $-x^2 + 4x + 5$?
- **40.** Find $\lim_{x\to 1} \frac{\log x}{x-1}$.

SECTION-B

Answer any five questions:

2×5=10

- 41. State Cauchy's necessary and sufficient conditions for the existence of a limit.
- 42. Examine the existence of the limit

$$\lim_{x \to 0} \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}$$

- 43. Define the continuity of a function at a given point (ε - δ definition).
- **44.** Show that the function |x| is not differentiable at x = 0.

- **45.** If $y = \sin^3 x$, then find y_n .
- **46.** Find y_n , if $y = x^2 e^{ax}$.
- 47. Find the equation of the tangent to the curve $x = a(\theta + \sin \theta), \ y = b(1 \cos \theta)$ at any point θ .
- **48.** Find the radius of curvature of the parabola $y^2 = 4ax$ at the vertex (0, 0).
- 49. Show that

$$\lim_{x\to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}$$

50. Show that the function $x^3 - 6x^2 + 24x + 4$ has neither a maximum nor a minimum.

CENTRAL LIBRARY N.C.COLLEGE (8)

SECTION—C

Answer any five questions

51. (a) Using Cauchy's criterion, show that

$$\lim_{x\to 0}\cos\frac{1}{x}$$

does not exist.

(b) Evaluate:

Evaluate:

 $\lim_{x\to\infty}\frac{x^n}{x^n+1}$

52. (a) Using ε - δ definition of limit, show that

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

Show that

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

where x is in radian measure.

Show that

$$\lim_{x\to 2} [x]$$

does not exist.

(Continued)

3

2

3

3

2

(9)

Show that the function f(x), defined by

$$f(x) = \begin{cases} -x, & \text{when } x \le 0 \\ x, & \text{when } 0 < x < 1 \\ 2 - x, & \text{when } x \ge 1 \end{cases}$$

is continuous at x = 0 and x = 1. 4

If a function is differentiable at a point, then show that it is continuous there at. Also show by an example that the 3+1=4 converse needs not be true.

Show that the function

$$|x|+|x-1|+|x-2|$$

is continuous at x = 0, 1, 2.

Show that the function f(x), defined as

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

is differentiable at x = 0, but f'(x) is not continuous there at.

55. (a) If $u = \sin ax + \cos ax$, then show that

$$u_n = a^n \sqrt{1 + (-1)^n \sin 2ax}$$
 4

4

4

(b) If $y = a\cos(\log x) + b\sin(\log x)$, then show that

$$x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$$

(Turn Over) 10-21/288

10-21/288

(10)

56. (a) If u = f(xyz), then show that

$$xu_x = yu_y = zu_z$$
 2

(b) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then show that

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$$

(c) If

$$u = \cos^{-1} \frac{x^2 + y^2}{x + y}$$

then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$$

57. (a) Prove that the condition that the line bx + my = 1 should touch the curve $(ax)^n + (by)^n = 1$ is

$$\left(\frac{l}{a}\right)^{\frac{n}{n-1}} + \left(\frac{m}{b}\right)^{\frac{n}{n-1}} = 1$$

- (b) Find the angle of intersection of the curves $x^2 y^2 = 2a^2$ and $x^2 + y^2 = 4a^2$.
- **58.** (a) Show that in the equiangular spiral $r = ae^{\theta \cot \alpha}$, the tangent is inclined at a constant angle to the radius vector.

10-21**/288**

(Continued)

(11)

(b) Find
$$\frac{ds}{d\theta}$$
 for the curve $r = ae^{\theta}$.

(c) Find the radius of curvature at any point (x, y) for the curve $x^{2/3} + y^{2/3} = a^{2/3}$.

3

- **59.** (a) In Lagrange's mean value theorem $f(x+h) = f(x) + h f'(x+\theta h)$ if $f(x) = Ax^2 + Bx + C$, $A \ne 0$, show that $\theta = \frac{1}{2}$.
 - (b) Show that $\sin x > x \frac{x^3}{6}$, if $0 < x < \pi/2$.
- **60.** (a) Find the maximum and minimum values of u, where

$$u = \frac{4}{x} + \frac{36}{y} \text{ and } x + y = 2$$

(b) Find

$$\lim_{x \to 0} (\cot^2 x)^{\sin x}$$
 4
