CENTRAL LIBRARY N.C.COLLEGE

2019/TDC/ODD/SEM/MTMHCC-101T/172

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(1st Semester)

Course No.: MTMHCC-101T

(Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two of the following:

2×2=4

- (a) Find y_n , if $y = \sin 3x \cos 2x$.
- (b) If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$.
- (c) Using Leibnitz's theorem, differentiate n times the equation

$$(1+x^2)y_2 + (2x-1)y_1 = 0$$

(3)

- 2. Answer either (a) and (b) or (c) and (d):
 - (a) If $y = x^{2n}$, where n is a +ve integer, show that

$$y_n = 2^n \{1 \cdot 3 \cdot 5 \cdot \cdots (2n-1)\} x^n$$
 3

- (b) If $y = \tan^{-1} x$, then prove that $(1+x^2)y_{n+1} + 2nxy_n + n(n-1)_{n-1} = 0$ Find also the value of $(y_n)_0$.
- (c) If $y = e^{-x} \cos x$, prove that $y_A + 4y = 0$ 3
- (d) By forming in two different ways the nth derivative of x^{2n} , show that

$$1 + \frac{n^2}{1^2} + \frac{n^2(n-1)^2}{1^2 \cdot 2^2} + \frac{n^2(n-1)^2(n-2)^2}{1^2 \cdot 2^2 \cdot 3^2} + \dots = \frac{(2n)!}{(n!)^2}$$

UNIT-II

- 3. Answer any two of the following: $2\times2=4$
 - (a) Evaluate:

$$\lim_{n\to\infty}\frac{x^4}{e^x}$$

(Continued)

3

- (b) Define inflection point on a curve. Give example to show that a point where $y^n = 0$ is not necessarily an inflection point.
- (c) Write the parametric and Cartesian equation of an astroid and draw a rough sketch.
- 4. Answer either (a) and (b) or (c) and (d):
 - (i) Lt $\left(\frac{\sin x}{x}\right)^{\frac{1}{x}}$;
 - (ii) Lt $(1-\sin x)\tan x$. $1\frac{1}{2}+1\frac{1}{2}=3$
 - (b) Examine the curve $y = -2x^3 + 6x^2 3$ for concavity and points of inflection, if any. Also draw a rough sketch.
 - (c) Evaluate: $1\frac{1}{2}+1\frac{1}{2}=3$ (i) $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$ (ii) $\lim_{x\to 1} \left(\frac{1}{x^2+1} \frac{2}{x^4+1}\right)$
 - (d) Define horizontal asymptote of a curve.Find the asymptotes of the curve

$$y = \frac{x+3}{x+2}$$

3

3

20J**/1205**

(Turn Over)

(4)

UNIT--III

- **5.** Answer any *two* of the following: $2 \times 2 = 4$

 - (b) Evaluate: $\int_0^{\pi/2} \cos^8 \theta \, d\theta$
 - $I_n = \int_0^{\pi/2} \sin^n x \, dx$ in being a +ve integer, show that

$$I_n = \frac{n-1}{n}I_{n-2}$$

- 6. Answer either (a) and (b) or (c) and (d):
 - (a) If $I_{m,n} = \int \sin^m x \cos nx \, dx$

show that

$$(n^{2} - m^{2}) I_{m,n} = \sin^{m-1} x (n \sin nx \sin x + m \cos nx \cos x) - m(m-1) I_{m-2,n}$$

(5)

(b) If $U_n = \int_0^{\pi/2} x^n \sin x \, dx, \quad n > 0$

show that

$$U_n + n(n-1) U_{n-2} = n \left(\frac{\pi}{2}\right)^{n-1}$$

- (c) Obtain a reduction formula for $I_{m,n} = \int \cos^m x \cos nx \, dx$ connecting with $I_{m-1, n-1}$.
- (d) Prove that $\int_0^{\pi/2} \sin^n x \, dx$ $= \frac{(n-1)(n-3)\cdots 4\cdot 2}{n(n-2)\cdots 5\cdot 3}, \text{ if } n \text{ is odd}$ $= \frac{(n-1)(n-3)\cdots 3\cdot 1}{n(n-2)\cdots 4\cdot 2} \cdot \frac{\pi}{2}, \text{ if } n \text{ is even}$

UNIT--IV

- 7. Answer any two of the following: $2\times 2=4$
 - (a) What do you mean by rectification of plane curve? Write the formula to find the length of the curve y = f(x) from x = a to x = b.

3

(c)

If

(6)

- Determine the area bounded by the parabola $u^2 = 4ax$ and its latus rectum.
- Find the surface area of a solid generated by revolving the semicircular arc of radius c about the axis of x.
- 8. Answer either (a) and (b) or (c) and (d):
 - Show that the perimeter of the curve $r = a(1 - \cos\theta)$ is 8a.
 - Show that the area cut-off a parabola by any double ordinate is two-third of the corresponding rectangle contained by the double ordinate and its distance from the vertex.
 - Find the area of the astroid

 $x^{2/3} + u^{2/3} = a^{2/3}$ 3

Find the surface area of the solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about its base.

(7)

UNIT-V

9. Answer any two of the following:

 $2 \times 2 = 4$

- (a) Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$ and $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.
- (b) Find the vector equation of the line parallel to the vector \hat{i} and passing through the point (0, 1, 0).
- Show that the derivative of a constant vector is zero.
- **10.** Answer either (a) and (b) or (c) and (d):
 - (a) Prove that $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]$

$$= \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{b} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$
$$= [\vec{a} \ \vec{b} \ \vec{c}]^{2}$$

Find the vector equation of a plane passing through three given points.

3

3

3

3

(8)

(c) If $\vec{r} = 3t\hat{i} + 3t^2\hat{j} + 2t^3\hat{k}$, where t is a scalar, show that

$$\left[\frac{d\vec{r}}{dt}\frac{d^2\vec{r}}{dt^2}\frac{d^3\vec{r}}{dt^3}\right] = 216$$

3

3

(d) If $\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} - \hat{k}$ are position vectors of the extremities of a diameter of a sphere, find the equation of the sphere both in vector and Cartesian forms.

* * *

CENTRAL LIBRARY N.C.COLLEGE

2019/TDC/ODD/SEM/MTMHCC-102T/173

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(1st Semester)

Course No.: MTMHCC-102T

(Higher Algebra)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any *two* from the following questions: $2\times2=4$
 - (a) Expand $\cos^2 \theta$ in the powers of θ .
 - (b) If $x_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, then prove that

 $x_1x_2 \cdots$ to infinity = -1

20J/1206

(Turn Over)

(c) Show that

$$\pi = 2\sqrt{3}\left(1 - \frac{1}{3\cdot 3} + \frac{1}{5} \cdot \frac{1}{3^2} - \frac{1}{7} \cdot \frac{1}{3^3} + \cdots\right)$$

- 2. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) If $x = \cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$, $z = \cos \gamma + i \sin \gamma$ and x + y + z = xyz, then prove that

$$\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) + 1 = 0$$

- (b) (i) Show that the product of n, nth roots of unity is $(-1)^{n-1}$.
 - (ii) Show that

$$\frac{\pi}{12} = \left(1 - \frac{1}{3^{\frac{1}{2}}}\right) - \frac{1}{3}\left(1 - \frac{1}{3^{\frac{3}{2}}}\right) + \frac{1}{5}\left(1 - \frac{1}{3^{\frac{5}{2}}}\right) - \dots \infty$$

(c) Prove that the principal value of $(\alpha + i\beta)^{x+iy}$ is wholly real or wholly imaginary according as $\frac{1}{2}y\log(\alpha^2 + \beta^2) + x\tan^{-1}\frac{\beta}{\alpha}$ is an even or odd multiple of $\frac{\pi}{2}$.

(d) If x_1 , x_2 , x_3 , x_4 are the roots of the equation

$$x^4 - x^3 \sin 2\alpha + x^2 \cos 2\alpha - x \cos \alpha - \sin \alpha = 0$$

then show that

$$\sum \tan^{-1} x_1 = n\pi + \frac{\pi}{2} - \alpha$$

UNIT-II

- **3.** Answer any *two* from the following questions: 2×2=4
 - (a) Prove that inverse of function if it exists is unique.
 - (b) Give an example of a relation which is symmetric and transitive but not reflexive.
 - (c) Define the following:
 - (i) Equivalence class
 - (ii) Portion of a set
- 4. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Define bijective mapping. Show that $f: N \to N$ defined by

$$f(x) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x-1, & \text{if } x \text{ is even} \end{cases}$$

is bijective.

5

(b) Let $f: Z \to Z$ be defined by f(n) = 3n for all $n \in Z$ and $g: Z \to Z$ be defined by

$$g(n) = \begin{cases} \frac{n}{3}, & \text{if } n \text{ is a multiple of 3} \\ 0, & \text{if } n \text{ is not a multiple of 3} \end{cases}$$

 $\forall n \in \mathbb{Z}$. Show that

$$g \circ f = I_Z$$
 and $f \circ g \neq I_Z$ 5

(c) Consider $f: R \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$, where R^+ is the set of all non-negative real numbers. Show that f is invertible with

$$f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$$

- (d) Let $f: X \to Y$ be a map such that $A, B \subseteq X$. Then show that
 - (i) $f(A \cup B) = f(A) \cup f(B)$
 - (ii) $f(A \cap B) \subseteq f(A) \cap f(B)$

The equality hold provided f is 1-1 map.

3+3=6

(Continued)

•

Unit—III

- **5.** Answer any *two* from the following questions: 2×2=4
 - (a) If $a \equiv b \pmod{m}$, then prove that $a^K \equiv b^K \pmod{m} \ \forall \ K \ge 1$

(5)

- (b) Find the remainder when 5⁴⁸ is divided by 24.
- (c) Prove that one of every three consecutive integers is divisible by 3.
- 6. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) State and prove division algorithm. 1+4=5
 - (b) If a and b are any two integers not both zero, then gcd(a, b) exists and is unique.
 - (c) Prove that well-ordering principle is equivalent to the principle finite induction.
 - (d) (i) If a, b and c are integers such that $ac = bc \pmod{m}$, m > 0 is a fixed integer and d = (c, m), then show that $a \equiv b \pmod{\frac{m}{d}}$.
 - (ii) Prove that the product of any three consecutive integers is divisible by |3.

UNIT-IV

- 7. Answer any two from the following questions: 2×2=4
 - (a) Find the equation whose roots are double the roots of

$$x^3 - 6x^2 + 11x - 6 = 0$$

20J/1206

(Turn Over)

5

4

3

(6)

- (b) Remove the second term of the equation $x^4 + 10x^3 + 26x^2 + 10x + 1 = 0$
- (c) State Descartes' rule of signs.
- 8. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) If one root of the equation $x^3 + px^2 + qx + r = 0$ equals the sum of the other two, then prove that

$$p^3 + 8r = 4pq 5$$

(b) Solve by Cardan's method:

$$x^3 - 18x - 35 = 0$$

(c) If α , β , γ be the roots of the equation $x^3 + 2x^2 + 3x + 4 = 0$, then find the equation whose roots are

$$\alpha - \frac{1}{\beta \gamma}, \ \beta - \frac{1}{\gamma \alpha}, \ \gamma - \frac{1}{\alpha \beta}$$

(d) If $\alpha_1, \alpha_2, \dots, \alpha_n$ be the roots of the equation

$$x^{n} + p_{1}x^{n-1} + p_{2}x^{n-2} + \dots + p_{n}x^{n} + p_{n} = 0$$

 $p_n \neq 0$, then find the value of

(i)
$$\sum \frac{\alpha_1^2 + \alpha_2^2}{\alpha_1 \alpha_2}$$

(ii)
$$\sum \frac{\alpha^1}{\alpha_2^2}$$

3+3=6

20J**/1206** (Continued)

(7)

UNIT-V

- **9.** Answer any *two* from the following questions: 2×2=4
 - (a) Prove that any subset of LI set of vectors is LI.
 - (b) Define linearly independent and linearly dependent set of vectors.
 - (c) Define echelon form of a matrix.
- 10. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Prove that the rank of product of two matrices cannot exceed the rank of either matrix.
 - (b) Find the rank of the matrix

$$\begin{pmatrix}
2 & 3 & -1 & 1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{pmatrix}$$

c) Solve by Gaussian elimination method:

$$x+y+z=6$$

$$x-y+z=2$$

$$2x+y-z=1$$

(Turn Over)

5

5

CENTRAL LIBRARY N.C.COLLEGE

(8)

- (d) (i) Show that the vectors (1, 2, -3, 4), (3, -1, 2, 1) and (1, -5, 8, -7) of $R^4(R)$ are linearly dependent.
 - (ii) Show that the vectors (2, 3, 4), (0, 5, 6) and (0, 0, 8) are linearly independent.

3

2

* * *