CENTRAL LIBRARY N.C.COLLEGE

2018/TDC/ODD/MTMC-101T/068

TDC (CBCS) Odd Semester Exam., 2018

MATHEMATICS

(1st Semester)

Course No.: MTMHCC-101T

(Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any two of the following: $2\times2=4$
 - (a) If $y = \log(x + a)$, then find y_n .
 - (b) If $y = e^{ax} \sin bx$, then show that $y_2 2ay_1 + (a^2 + b^2)y = 0$
 - (c) State Leibnitz rule on successive differentiation.

CENTRAL LIBRARY N.C.COLLEGE

(2)

- 2. Answer either (a) and (b) or (c) and (d):
 - (a) If $y = \sin mx$, then show that

$$\begin{vmatrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \end{vmatrix} = 0$$

(b) If $y = e^{a \sin^{-1} x}$, then prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$
Hence find $(y_n)_0$.

(c) If $x \sin \theta + y \cos \theta = a$ and $x \cos \theta - y \sin \theta = b$

then prove that

$$\frac{d^p x}{d\theta^p} \cdot \frac{d^q y}{d\theta^q} - \frac{d^q x}{d\theta^q} \cdot \frac{d^p y}{d\theta^p}$$

is constant.

(d) Prove that

$$\frac{d^n}{dx^n}(x^n\sin x) = n!(P\sin x + Q\cos x)$$

where $P = 1 - \left(\frac{n}{2}\right) \frac{x^2}{2} + \left(\frac{n}{4}\right) \frac{x^4}{4!} - \dots$

$$Q = \left(\frac{n}{1}\right)x - \left(\frac{n}{3}\right)\frac{x^3}{3!} + \left(\frac{n}{5}\right)\frac{x^5}{5!} - \dots$$
 3

3

(Continued)

(3)

UNIT-II

- 3. Answer any two of the following: $2 \times 2 = 4$
 - (a) Show that $\lim_{x \to 0+} (1+x)^{1/x} = e$.
 - (b) Define asymptote of a curve.
 - (c) Using the same set of rectangular axes, draw the graphs of the curves $y = \sin x$ and $y = \sin 2x$, $0 \le x \le 2\pi$.
- 4. Answer either (a) and (b) or (c) and (d):
 - (a) Find:

 $1\frac{1}{2} \times 2 = 3$

(i) Lt
$$_{x\to 0} \frac{(e^x - 1)\tan^2 x}{x^2}$$

- (ii) $\underset{x \to 0}{\text{Lt}} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$
- (b) Examine the curve $y = x^3 3x + 3$ for concavity and points of inflection, if any. Hence trace the curve showing clearly the extreme points and points of reflection, if any.
- (c) Evaluate:

 $1\frac{1}{2} \times 2 = 3$

3

(i) Lt
$$(\cos x)^{\cot^2 x}$$

(ii) Lt
$$x \to 0$$
 $\frac{xe^x - \log(1+x)}{x^2}$

J9/1093

(Turn Over)

(4)

(5)

(d) Find the asymptote of the curve

$$y = \frac{-8}{x^2 - 4}$$

UNIT---III

5. Answer any two of the following: $2 \times 2 = 4$

(a) If $I_n = \int x^n \cos ax \, dx$ $J_n = \int x^n \sin ax \, dx$

then show that $aI_n = x^n \sin ax - nJ_{n-1}$

- (b) Evaluate $\int_0^{\pi/2} \cos^{10} \theta d\theta$.
- (c) If $I_n = \int_0^{\pi/4} \tan^n \theta \, d\theta = \frac{1}{n-1} I_{n-2}$, then find I_6 .
- 6. Answer either (a) and (b) or (c) and (d):
 - (a) From the reduction formula for $\int \cos^m x \cos nx \, dx$, obtain the value of $\int \cos^3 x \cos 5x \, dx$.
 - (b) If $I_{m,n} = \int_0^{\pi/2} \sin^m x \cos^n x \, dx$, $m, n \in \mathbb{N}$, then prove that $I_{m,n} = \frac{n-1}{m+n} I_{m,n-2}$.

(c) Obtain a reduction formula for $\int \sec^n x \, dx$. Hence find $\int \sec^6 x \, dx$.

d) Prove that

 $\int_0^{\pi/2} \cos^n x \, dx = \frac{(n-1)(n-3)\cdots 4\cdot 2}{n(n-2)\cdots 5\cdot 3} , \text{ if } n \text{ is odd}$ $= \frac{(n-1)(n-3)\cdots 3\cdot 1}{n(n-2)\cdots 4\cdot 2} \frac{\pi}{2}, \text{ if } n \text{ is even} \quad 3$

UNIT--IV

7. Answer any two of the following: $2\times2=4$

- (a) Find by integration the length of y = 3x from x = 0 to x = 3.
- (b) Find the area of the region bounded by the curve $y^2 = x$ and the line y = x.
- (c) Show that the surface area of a sphere of radius a is $4\pi a^2$.

8. Answer either (a) and (b) or (c) and (d):

- (a) Determine the length of the arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$ measured from the vertex.
- (b) Find the area of the smaller portion enclosed by the curves $x^2 + y^2 = 9$ and $y^2 = 8x$.

3

3

3

3

(Continued)

3

3

- (6)
- (c) Find the length of the arc of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ lying in the 1st quadrant.
- (d) Find the area of the surface of the solid generated by revolving the arc of the parabola $y^2 = 4ax$ bounded by the latus rectum about X-axis.
 - UNIT---V
- **9.** Answer any *two* of the following: $2\times2=4$
 - (a) Prove that $\vec{a} \times \vec{b} = \{(\hat{i} \times \vec{a}) \cdot \vec{b}\} \hat{i} + \{(\hat{j} \times \vec{a}) \cdot \vec{b}\} \hat{j} + \{(\hat{k} \times \vec{a}) \cdot \vec{b}\} \hat{k}$
 - (b) Find the vector equation of the plane through the point $2\hat{i} + 3\hat{j} \hat{k}$ and perpendicular to the vector $3\hat{i} + 4\hat{j} + 7\hat{k}$.
 - (c) If $\vec{r} = 5t^2\hat{i} + t\hat{j} t^3\hat{k}$ and $\vec{s} = \sin t\hat{i} \cos t\hat{j}$ then find the values of $\frac{d}{dt}(\vec{r} \cdot \vec{s})$ and $\frac{d}{dt}(\vec{r} \times \vec{s})$.

- .(7)
- 10. Answer either (a) and (b) or (c) and (d):
 - (a) Show that if \vec{a} , \vec{b} , \vec{c} are non-coplanar, then $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are also non-coplanar. Is this true for $\vec{a} \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$?

3

3

3

- (b) Find the vector equation of the plane passing through a given point and parallel to two given vectors.
- (c) Show that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ if and only if either $\vec{b} = \vec{0}$ or \vec{c} is collinear with \vec{a} , or \vec{b} is perpendicular to both \vec{a} and \vec{c} .
- (d) Prove that the necessary and sufficient condition for a vector $\vec{r} = \vec{f}(t)$ to have a constant direction is $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$.

**

CENTRAL LIBRARY N.C.COLLEGE

2018/TDC/ODD/MTMC-102T/069

TDC (CBCS) Odd Semester Exam., 2018

MATHEMATICS

(1st Semester)

Course No.: MTMHCC-102T

(Higher Algebra)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any two from the following questions: 2×2=4
 - (a) State De Moivre's theorem for rational indices.
 - (b) Write down the polar form of the complex number -1+i.

(· 2)

- (c) If $2\cos\theta = a + \frac{1}{a}$, $2\cos\phi = b + \frac{1}{b}$, then find the value of $ab + \frac{1}{ab}$.
- **2.** Answer any *two* from the following questions: $5\times2=10$
 - (a) If $(a_1 + ib_1)(a_2 + ib_2)\cdots(a_n + ib_n) = A + iB$, prove that—

(i)
$$\tan^{-1} \frac{b_1}{a_1} + \tan^{-1} \frac{b_2}{a_2} + \dots + \tan^{-1} \frac{b_n}{a_n}$$

= $\tan^{-1} \frac{B}{A}$;

(ii)
$$(a_1^2 + b_1^2) \times (a_2^2 + b_2^2) \cdots (a_n^2 + b_n^2)$$

= $A^2 + B^2$.

(b) If $(1+x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$ then show that—

(i)
$$a_0 - a_2 + a_4 - \dots = 2^{n/2} \cos \frac{n\pi}{4}$$
;

(ii)
$$a_1 - a_3 + a_5 - \dots = 2^{n/2} \sin \frac{n\pi}{4}$$
.

- (c) Expand $\sin \alpha$ in ascending power of α .
- (d) If $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$, then expand θ in powers of $\tan \theta$.

(3)

UNIT-II

- **3.** Answer any *two* from the following questions: $2 \times 2 = 4$
 - (a) Define equivalence relation on a set.
 - (b) Let A and B be two sets. If $f: A \to B$ is one-one onto, then prove that $f^{-1}: B \to A$ is also one-one onto.
 - (c) Give an example of a relation which is reflexive and transitive but not symmetric.
- **4.** Answer any *two* from the following questions: $5 \times 2 = 10$
 - (a) On the set Z of all integers, consider the relation $R = \{(a, b) : a b \text{ is divisible by 3}\}$. Show that R is an equivalence relation. Find the partitioning of Z into mutually disjoint equivalence classes.

(b) Let
$$A = R - \{\frac{3}{5}\}$$
, $B = R - \{\frac{7}{5}\}$. Also let $f: A \to B: f(x) = \frac{7x+4}{5x-3}$ and $g: B \to A: g(y) = \frac{3y+4}{5y-7}$

Show that

$$(g \circ f) = I_A$$
 and $(f \circ g) = I_B$ 5

(4)

(5)

- (c) Let $f: R \to R: f(x) = 4x + 3$, for all $x \in R$. Show that f is invertible and find f^{-1} .
- (d) If $f: A \rightarrow B$ is one-one onto, then prove that f is an invertible function.

UNIT-III

- **5.** Answer any *two* from the following questions: $2 \times 2 = 4$
 - (a) State the principle of mathematical induction.
 - (b) Define Euclidean algorithm.
 - (c) State the fundamental theorem of arithmetic.
- **6.** Answer any *two* from the following questions: $5\times 2=10$
 - (a) Prove by principle of mathematical induction

 $1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n \cdot 2^n = (n-1)2^{n+1} + 2$

(b) Prove by principle of mathematical induction

 $1(1!) + 2(2!) + 3(3!) + \cdots + n(n!) = (n+1)! - 1$

- (c) Using division algorithms, prove that the square of any odd integer is of the form 8k+1 for some integer k.
- (d) If (a, 4) = 2 and (b, 4) = 2, then prove that (a+b, 4) = 4.

UNIT-IV

- **7.** Answer any *two* from the following questions: 2×2=4
 - (a) Examine the nature of the roots of the following equation by using Descartes' rule of signs $x^4 + 2x^2 + 3x 1 = 0$.
 - (b) If α , β , γ be the roots of the equation $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$ then find the value of $\sum \alpha^2 \beta$.
 - (c) Remove the fractional coefficient of the equation

$$x^4 - \frac{2}{3}x^3 - \frac{5}{6}x^2 + \frac{7}{72}x + \frac{11}{216} = 0$$

- **8.** Answer any *two* from the following questions: $5\times 2=10$
 - (a) If α , β , γ be the roots of the equation $x^3 + px + r = 0$, then find the value of $\sum \frac{1}{\alpha^2 \beta \gamma}$.

(b) Solve the following equation by Cardan's method:

$$x^3 - 6x - 4 = 0$$

(c) Solve the equation

$$27x^3 + 42x^2 - 28x - 8 = 0$$

whose roots are in geometric progression.

(d) If α , β , γ be the roots of $2x^3 + x^2 + x + 1 = 0$, then find the equation whose roots are

$$\frac{1}{\beta^3} + \frac{1}{\gamma^3} - \frac{1}{\alpha^3}, \frac{1}{\gamma^3} + \frac{1}{\alpha^3} - \frac{1}{\beta^3}, \frac{1}{\alpha^3} + \frac{1}{\beta^3} - \frac{1}{\gamma^3}$$

UNIT-V

- **9.** Answer any *two* from the following questions: $2\times 2=4$
 - (a) Define rank of a matrix.
 - (b) Under what condition the rank of the matrix

$$\begin{bmatrix} 2 & 4 & 2 \\ 2 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$$

is 3?

(c) If A is a non-zero column matrix and B is a non-zero row matrix, then show that rank (AB) = 1.

10. Answer any *two* from the following questions: $5\times2=10$

(a) Find the rank of the matrix

$$A = \begin{pmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{pmatrix}$$

by reducing it to echelon form.

(b) Solve the following system of equations by Gaussian elimination method:

$$5x-2y+z=4$$
$$7x+y-5z=8$$
$$3x+7y+4z=10$$

- (c) Prove that the interchange of a pair of rows does not alter the rank of a matrix.
- (d) Reduce the following matrix to normal form:

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8 \end{pmatrix}$$

* * *