2024/TDC (CBCS)/EVEN/SEM/ MTMSEC-601T/242

TDC (CBCS) Even Semester Exam., 2024

MATHEMATICS

(6th Semester)

Course No.: MTMSEC-601T

(Analytical Geometry)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

Unit-I

- 1. Answer any three of the following as directed:
 - (a) If the origin is transferred to the point (h, k) without changing direction of the axes, then write the transformation formula for the translation of axes.
 - (b) What does the equation $x^2 y^2 = 0$ become when the origin is transferred to the point (-1, 2)?

(2)

(c) A homogeneous second degree equation always represents a pair of straight lines passing through origin.

(Write True or False)

- (d) Write down the equation of bisectors of angles between the pair of straight lines $ax^2 + 2hxu + bu^2 = 0$.
- 2. Answer any one question:

(a) Transform to axes inclined at 30° to the original axes the equation

$$x^2 + 2\sqrt{3}xy - y^2 - 2 = 0$$

- (b) Show that $3x^2 + 5xy + 2y^2 = 0$ represents a pair of straight lines. Find the straight lines.
- 3. Answer any one question:
 - (a) Find the angle by which the axes should be rotated so that the equation $ax^2 + 2hxy + by^2 = 0$ becomes another equation in which the xy term is absent. Also find the angle through which the axes are to be rotated so that the equation $17x^2 + 18xy 7y^2 = 1$ may be reduced to the form $Ax^2 + By^2 = 1$, A > 0. Find also A and B. 2+3=5

(3)

(b) Find the angle between the lines represented by $ax^2 + 2hxy + by^2 = 0$.

Also write the condition of coincidence and perpendicularity of the lines. 3+2=5

UNIT-II

- **4.** Answer any *three* of the following questions: 1×3=3
 - (a) Obtain the equation of the circle whose center is at (-1, -2) and radius is $\sqrt{2}$.
 - (b) Define orthogonal circles.
 - (c) Write down the equation of circles which intersect two circles $x^2 + y^2 + 2x + 1 = 0$ and $x^2 + y^2 + 2y + 3 = 0$.
 - (d) Find the radical axis of the two circles

$$x^2 + y^2 + 4x - 2y + 9 = 0$$

and

$$x^2 + y^2 + 2x + 3y - 5 = 0.$$

- 5. Answer any one question:
 - (a) Find the value of λ for which the circles

$$x^2 + y^2 + \lambda x + 3y - 5 = 0$$

and

$$x^2 + y^2 + 5x + xy + 7 = 0$$

cut each other orthogonally.

2

2

(4)

- (b) Show that the straight line lx+my+n=0 touches the circle $x^2+y^2=a^2$ if $n^2=a^2(l^2+m^2)$.
- **6.** Answer any one question:
 - (a) (i) Find the equation of the circle which passes through origin and cut orthogonally the circles

$$x^2 + y^2 - 8y + 12 = 0$$

and

$$x^2 + y^2 - 4x - 6y - 3 = 0$$

(ii) Find the radical center of the set of circles

$$x^{2}+y^{2}+x+2y+3=0$$
, $x^{2}+y^{2}+2x+4y+5=0$
and $x^{2}+y^{2}-7x-8y-9=0$.

(b) If two tangents drawn from a point to a conic be perpendicular to one another, then prove that the locus of their point of intersection is a circle.

UNIT-III

7. Answer any three of the following questions:

1×3=3

5

3

- (a) Define focal chord of a parabola.
- (b) Find the foci of the ellipse $9x^2 + 25y^2 = 225$.

(c) Write down the condition that the line y = mx + c is a tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

- (d) Write the equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in parametric form.
- 8. Answer any one question:
 - (a) Find the equation of the ellipse which passes through the point (-3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$.
 - (b) Find the points on the conic $\frac{14}{r} = 3 8\cos\theta$, whose radius vector is 2.
- 9. Answer any one question:
 - (a) (i) Obtain polar equation of a conic referred to a focus as pole.
 - (ii) Write polar equation of the ellipse

$$\frac{x^2}{36} + \frac{y^2}{20} = 1,$$

if the pole be at its right-hand focus and the positive direction of the x-axis be the positive direction of the polar axis.

24J/845

(Turn Over)

2

5

3

2

(6)

(7)

(b) Prove that the straight line lx+my+n=0 is a normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

if

$$\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$$

UNIT-IV

- **10.** Answer any *three* of the following as directed: 1×3=3
 - (a) Under what condition $ax^2 + by^2 + cz^2 + 2gx + 2fy + 2hz + c = 0$ represents a sphere?
 - (b) The section of a sphere by a plane represents a _____.

 (Fill in the blank)
 - (c) Find the equation of the tangent plane to the sphere $x^2 + y^2 + z^2 = 49$ at the point (6, -3, -2).
 - (d) What is the equation of a sphere which passes through origin having intercepts a, b and c on the axes?

24J**/845**

(Continued)

11. Answer any one question:

.•...

2

- (a) Find the radius of the circle $x^2 + y^2 + z^2 = 25$, x + 2y + 2z + 9 = 0.
- (b) Find the values of c for which the plane x+y+z=c touches the sphere $x^2+y^2+z^2-2x-2y-2z-6=0$
- 12. Answer any one question:

5

(a) Show that the length of the shortest distance between the straight lines

$$\frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5}$$
 and $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3}$

is $4\sqrt{3}$ units and the equations of the line of shortest distance are x = y = z.

(b) (i) A plane passing through a fixed point (a, b, c) cuts the axes in A, B and C. Show that the locus of the center of the sphere OABC is

$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$$

3

2

5

- (ii) Find the equation of the circle on the sphere $x^2 + y^2 + z^2 = 49$ whose center is at the point (2, -1, 3).
- 24J**/845**

(Turn Over)

(8)

UNIT-V

13. Answer any three of the following questions:

1×3=3

2

- (a) What do you mean by guiding curve of a cone?
- (b) Define axis and semi-vertical angle of a cone.
- (c) Define axis of a cylinder.
- (d) What do you mean by generator of a cylinder?
- 14. Answer any one question:
 - (a) Find the equation of the cone whose vertex is at the origin and whose axis is $\frac{x}{3} = \frac{y}{2} = \frac{z}{4}$ and semi-vertical angle 45°.
 - (b) Find the equation of the cylinder generated by the lines parallel to $\frac{x}{1} = \frac{y}{-2} = \frac{z}{5}$, the guiding curve being the conic x = 0, $u^2 = 8z$.
- 15. Answer any one question:

(a) Prove that ax + by + cz = 0 ($abc \neq 0$), cuts the cone yz + zx + xy = 0 is perpendicular straight lines if

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$

(9)

(b) (i) Find the equation of a cylinder whose guiding curve is represented by f(x, y) = 0, z = 0 and whose generators are parallel to the line

$$\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$$

3

2

(ii) Find the equation of the cylinder generated by the straight lines parallel to z-axis and passing through the curve of intersection of the plane lx + my + nz = p and the surface $ax^2 + by^2 + cz^2 = 1$.
