# 2024/TDC (CBCS)/EVEN/SEM/ MTMHCC-602T/238

## TDC (CBCS) Even Semester Exam., 2024

### **MATHEMATICS**

(6th Semester)

Course No.: MTMHCC-602T

( Linear Algebra )

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

#### UNIT-I

1. Answer any two questions:

 $2 \times 2 = 4$ 

- (a) Show that the set  $L = \{(x, y) \mid 2x + 3y = 0\}$  is a subspace of  $\mathbb{R}^2(\mathbb{R})$ .
- (b) Check if the vectors (1, 0, 0), (1, 0, 1) and (1, 1, 1) are linearly independent.
- (c) If  $\{v_1, v_2, ..., v_k\}$  are linearly dependent vectors in a vector space  $V(\mathbb{R})$ , show that one of the vectors is a linear combination of the remaining vectors.

24J/841

(Turn Over)

# (3)

- **2.** Answer either [(a) and (b)] or [(c) and (d)] :
  - (a) Show that the intersection of finite number of subspaces of a vector space is also a subspace of the vector space. Give example to show that the same is not true for union.
  - (b) Let V be a finite dimensional vector space. Show that any two bases of V have the same number of elements.
  - (c) If  $W_1$  and  $W_2$  are subspaces of finite dimensional vector, show that  $\dim (W_1 + W_2) = \dim W_1 + \dim W_2$  $-\dim (W_1 \cap W_2) = 5$
  - (d) Find a basis and the dimension of each of the following subspaces of  $\mathbb{R}^n$ :  $V = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n \mid x_1 + x_2 + ... + x_n = 0\}$   $W = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n \mid x_1 = x_2 = x_3\}$ where  $n \ge 3$ .

#### UNIT-II

- **3.** Answer any *two* questions :  $2 \times 2 = 4$ 
  - (a) Define linear transformation from a vector space to another. Give an example, with justification, of a linear transformation from  $\mathbb{R}^3$  to  $\mathbb{R}^4$ .

- (b) Justify True or False:

  If S is a linearly independent set in a vector space V and  $T: V \rightarrow V$  is a linear transformation, then T(S) is also linearly independent.
- (c) If  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is such that T(1, 0) = (2, 3), T(0, 2) = (3, 2), find T(x, y) for any  $(x, y) \in \mathbb{R}^2$ .
- **4.** Answer either [(a) and (b)] or [(c) and (d)]:
  - (a) If  $T: V \to W$  be a linear map, show that the kernel of T and range of T are subspaces of V and W respectively.
  - (b) Consider  $T: \mathbb{R}^3 \to \mathbb{R}^4$  defined by T(x, y, z) = (z, y, x, x+y+z) Write the matrix of T w.r.t. the standard ordered bases of  $\mathbb{R}^3$  and  $\mathbb{R}^4$ .
  - (c) State and prove the rank-nullity theorem.
  - (d) Find the rank and nullity of  $T: \mathbb{R}^3 \to \mathbb{R}^3$  defined by T(x, y, z) = (x, y, x + y).

    Also, find the rank of the matrix of T w.r.t. the standard ordered basis of  $\mathbb{R}^3$ .

    Verify whether rank of T is same as the rank of the matrix of T.

6

5

6

5

# (5)

#### UNIT-III

5. Answer any two questions:

 $2 \times 2 = 4$ 

- (a) If  $T: V \to W$  and  $S: V \to W$  are two linear transformations, show that  $T+S: V \to W$  is also a linear transformation.
- (b) Show that a linear map  $T: V \to W$  is one-one iff  $T(v) = 0 \Leftrightarrow v = 0$ .
- (c) Justify if there can exist any one-one linear transformation from  $\mathbb{R}^4$  to  $\mathbb{R}^3$ .
- **6.** Answer either [(a) and (b)] or [(c) and (d)]:
  - (a) Let V be a finite dimensional vector space. Let  $T: V \to V$  be a linear transformation. Then show that the following are equivalent:

5

- (i)  $\ker(T) = \{0\}$
- (ii) Im (T) = V, where Im (T) is the image of T
- (b) Show that every n-dimensional vector space over  $\mathbb{R}$  is isomorphic to  $\mathbb{R}^n$ .
- (c) Let V and W be vector spaces over  $\mathbb{R}$ . Show that the set L(V, W) of all linear transformations from V to W is a vector space with suitably defined addition and scalar multiplication.

5

( Continued )

5

24J**/841** 

341 (Turn Over)

(d) Let  $T: V \to W$  be a linear map. Show that T is an isomorphism, if and only if, T(B) is a basis of W whenever B is a basis of V.

UNIT-IV

7. Answer any two questions:

 $2 \times 2 = 4$ 

5

5

- (a) Find the eigenvalues of the linear operator  $T: \mathbb{R}^2 \to \mathbb{R}^2$  defined by T(x, y) = (y, x).
- (b) If u, v and w are the eigenvectors corresponding to the eigenvalues of

$$A = \begin{pmatrix} 1 & 8 & 6 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

justify whether u, v, and w are linearly independent.

- (c) If v is an eigenvector of  $T: V \to V$  corresponding to  $\lambda$  and  $\alpha \in \mathbb{R}$  is a non-zero scalar, justify if  $\alpha v$  is also an eigenvector of T corresponding to  $\lambda$ .
- 8. Answer either [(a) and (b)] or [(c) and (d)] :
  - (a) Show that the eigenvectors of a linear operator corresponding to distinct eigenvalues are linearly independent.

(6)

(b) Verify that the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 1 & 2 & 2 \end{pmatrix}$$

obeys Cayley-Hamilton theorem. Hence find  $A^{-1}$ .

(c) Find the eigenvalues and the corresponding eigenvectors of the matrix

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$

(d) Define invariant subspace under a linear operator. Give an example. Show that the intersection of two invariant subspaces under a linear operator T is also invariant under T. 1+1+3=5

UNIT-V

- **9.** Answer any *two* questions :  $2 \times 2 = 4$ 
  - (a) Define inner product space over the field of complex numbers.
  - (b) Let  $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$  be defined by  $f((x_1, y_1), (x_2, y_2)) = x_1 y_1 + x_2 y_2$  Is f an inner product? Justify your answer.

- (c) Show that for any non-empty subset S of an inner product space V, the orthogonal complement  $S^{\perp}$  of S is a subspace of V.
- 10. Answer either [(a) and (b)] or [(c) and (d)]:
  - (a) For any two vectors x, y in an inner product space, show that

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$

Give a geometrical interpretation of this identity. 4+1=5

(b) Show that C<sup>2</sup> is an inner product space over C w.r.t. the inner product

$$\langle x, y \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2$$
  
for  $x = (x_1, x_2)$ ,  $y = (y_1, y_2)$  in  $\mathbb{C}^2$ .

(c) Let V be an inner product space. Define  $d: V \times V \to \mathbb{R}$  as

$$d(x, y) = ||x - y|| \quad \forall x, y \in V$$
  
Show that  $(V, d)$  is a metric space.

(d) Let W be a subspace of an inner product space V. Then prove that  $V = W \oplus W^{\perp}$ , i.e., V is an orthogonal direct sum of W and  $W^{\perp}$ .

 $\star\star\star$ 

24J-390/841

2024/TDC (CBCS)/EVEN/SEM/ MTMHCC-602T/238

5

4

6

5

5