CENTRAL LIBRARY N.C.COLLEGE

2024/TDC (CBCS)/EVEN/SEM/ MTMHCC-403T/234

TDC (CBCS) Even Semester Exam., 2024

MATHEMATICS

(4th Semester)

Course No.: MTMHCC-403T

(Ring Theory)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Unit-I

- 1. Answer any two of the following questions: $2 \times 2 = 4$
 - (a) Give an example to show that union of two subrings may not be a subring.
 - (b) Prove that in an integral domain R (with unity) the only idempotents are the zero and unity.
 - (c) Define characteristic of a ring. Give an example of a ring whose characteristic is 6(six).

(Turn Over)

- 2. Answer either (a) and (b) or (c) and (d):
 - (a) Prove that a non-zero finite integral domain is a field.

5

(b) If R is a division ring, then show that the centre Z(R) of R is a field.

5

(c) If D is an integral domain and if na = 0 for some 0 ≠ a∈ D and some integer, n≠0, then show that the characteristic of D is finite.

4

(d) Let R be a commutative ring with unity. Show that—

(i) if $a \in R$ is a unit, then a is not nilpotent;

- (ii) if $n \in R$ is nilpotent, then 1+n is a unit;
- (iii) the sum of a nilpotent element and a unit is a unit.

UNIT-II

3. Answer any two questions :

2×2=4

- (a) Prove that $6\mathbb{Z}$ is an ideal of \mathbb{Z} .
- (b) Define prime ideal. Give an example of it.
- (c) Give an example of an ideal of a ring which is neither prime nor maximal with justification.

4. Answer either (a) and (b) or (c) and (d):

(a) Let R be a ring with unity, such that R has no right ideals except {0} and R, then show that R is a division ring.

, 5

(b) Let R be a commutative ring with unity. Show that every maximal ideal of R is prime ideal.

5

(c) Let $A \neq R$ be an ideal of R, then for any $x \in R$, $x \notin A$, if A + (x) = R, show that A is maximal ideal of R and conversely.

5

5

(d) Show that a commutative ring R is an integral domain if and only if {0} is a prime ideal.

UNIT-III

5. Answer any two questions:

 $2 \times 2 = 4$

- (a) If $f:R \to R'$ be a ring homomorphism then prove that—
 - (i) f(0) = 0, with an array with assume
 - (ii) f(-a) = -f(a)

where 0, 0' are zeros of the rings R and R' respectively.

(4)

- (b) State fundamental theorem of ring homomorphism.
- (c) Let I be an ideal of a ring R. Show that
 - (i) if R is commutative then so is R_I
 - (ii) if R has unity 1 then 1 + I is unity of R_I .
- 6. Answer either (a) and (b) or (c) and (d):
 - (a) Let \mathbb{Z} be the ring of integers. Show that the only homomorphisms from $\mathbb{Z} \to \mathbb{Z}$ are the identity and zero mapping.
 - (b) Let $B \subseteq A$ be two ideals of a ring R, then prove that $\frac{R}{A} = \frac{R/B}{A/R}$.
 - (c) Prove that any homomorphism of a field is either a monomorphism or takes each element to zero.
 - (d) Find all the ring homomorphisms from $Z_{20} \rightarrow Z_{30}$.

UNIT-IV

- 7. Answer any two of the following questions: 2×2=4
 - (a) Let R[x] be the ring of polynomials over a ring R. Then prove that if R has unity, then R[x] has unity.

- (b) Give an example to show that quotient ring of an integral domain may not be an integral domain.
- (c) Define Euclidean domain. Give an example of it.
- 8. Answer either (a) and (b) or (c) and (d):
 - (a) Let R[x] be the ring of polynomials of a ring R. Then prove that R is an integral domain if and only if R[x] is an integral domain.
 - (b) Let a, b be two non-zero elements of a Euclidean domain R. If b is not a unit in R, then prove that d(a) < d(ab).
 - (c) If F is a field then prove that F[x] is a Euclidean domain.
 - (d) Show that in a principal ideal domain, every non-zero prime ideal is maximal.

UNIT-V

- **9.** Answer any *two* of the following questions: $2 \times 2 = 4$
 - (a) Give an example of a UFD which is not a PID.
 - (b) State Eisenstein's criterion.
 - (c) Show that $\frac{Q[x]}{I}$, where $I = \langle x^2 5x + 6 \rangle$, is not a field.

5

5

5

5

5

5

6

4

CENTRAL LIBRARY N.C.COLLEGE

(6)

10. Answer either (a) and (b) or (c) and (d)	IJ:
--	-----

(a) Prove that an integral domain R with unity is a UFD if and only if every non-zero, non-unit element is a finite product of primes.

6

4

4

(b) If R is an integral domain with unity and a is an irreducible element of R, then prove that a is irreducible element of

R[x].

(c) If F is a field, then prove that an ideal $\langle P(x) \rangle \neq \{0\}$ in F[x] is maximal if and only if P(x) is irreducible in F[x].

(d) If R is a UFD, then prove that R[x] is also a UFD.

* * *