CENTRAL LIBRARY N.C.COLLEGE

2024/FYUG/EVEN/SEM/ MATDSM-151T/128

FYUG Even Semester Exam., 2024

MATHEMATICS

(2nd Semester)

Course No.: MATDSM-151T

(Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten questions:

 $2 \times 10 = 20$

- 1. Define limit of a function at x = a.
- 2. Check the continuity of

$$f(x) = \begin{cases} x^2 & \text{when } x \neq 1\\ 2 & \text{when } x = 1 \end{cases}$$

24J**/1156** (Turn Over)

- 3. Use definition to find the derivative of $f(x) = \sqrt{x}$, x > 0.
- 4. Write the geometrical interpretation of Rolle's theorem along with a diagram.
- 5. Find the values of x at which $f(x) = 2x^3 21x^2 + 36x 20$ has local maxima or minima.
- 6. Evaluate:

$$\operatorname{Lt}_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

7. Find f_x and f_y for

$$f(x) = \tan^{-1}\left(\frac{y}{x}\right)$$

- 8. Find the slope of tangent to the curve $y = x^3 3x^2 + 9$ at x = 1.
- 9. Find the polar subtangent of $r = a(1 \cos \theta)$.

10. Show that

$$\int_0^a f(x) \, dx = \int_0^a f(a-x) \, dx$$

11. Evaluate

$$\int_0^{\pi/2} \sin^{10} x \, dx$$

12. If f is an odd function, then show that

$$\int_{-a}^{a} f(x) \, dx = 0$$

- 13. Write the formula to compute the area bounded by two curves $y = f_1(x)$ and $y = f_2(x)$ between x = a and x = b.
- 14. Write the formula for the length of the curve y = f(x) between two points having x_1 and x_2 as X-coordinates.
- 15. Write the formula for finding the volume of the solid of revolution formed by rotating y = f(x) about X-axis between $x = x_1$ and $x = x_2$.

SECTION-B

Answer any five questions:

10×5=50

16. (a) Use definition to show that

(b) If $y = \tan^{-1} x$, then show that $(1+x^2)y_1 = 1$. Also show that

$$(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$$

Hence find the value of $(y_n)_0$. 1+3+3=7

- 17. (a) Show that a function that is differentiable at a point is also continuous at that point. Give example of a function that is continuous at a point but not differentiable at that point. Justify your answer.

 3+2=5
 - (b) State and prove Leibnitz's theorem on successive differentiation.
- 18. (a) State and prove Lagrange's mean-value theorem. 5
 - (b) Derive the expansion of sin x in powers of x, stating the conditions under which the expansion is valid.

19. (a) Show that the largest rectangle with a given perimeter is a square.

(b) Evaluate:

3+3=6

4

(i) Lt
$$\sin x$$
 $\tan x$

(ii) Lt
$$_{x\to 2}$$
 $\left[\frac{4}{x^2-4} - \frac{1}{x-2}\right]$

20. (a) If $u = \log(x^2 + y^2)$, then show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$$

(b) State and prove Euler's theorem on homogeneous of two variables. Use it to show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

where
$$\tan u = \frac{x^3 + y^3}{x - y}$$
.

1+3+3=7

21. (a) Find the equation of the tangent to the curve

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

at any point (x_1, y_1) on it.

5

5

5

(6)

- (b) If lx + my = 1 is normal to the parabola $y^2 = 4ax$, then prove that $al^3 + 2alm^2 = m^2$.
 - 5 5

(Continued)

- 22. (a) Evaluate: $\int_0^{\pi/2} \log \sin x \, dx$
 - (b) Obtain a reduction formula for $\int_0^{\pi/2} \sin^n x \, dx$ where n is a positive integer.
- 23. (a) Evaluate: $\int_0^{\pi/2} \frac{x \, dx}{\sin x + \cos x}$
 - (b) Obtain a reduction formula for $\int_0^{\pi/2} \sin^m x \cos^n x \, dx$
 - where m and n are positive integers. 6
- 24. (a) Find the area of the segment cut off from the parabola $y^2 = 4x$ by the line y = x.
 - (b) Find the volume and surface of the solid generated by revolving the parabola $y^2 = 4ax$ about the axis and bounded by x = a. 3+3=6

- **25.** (a) Find the perimeter of the circle $x^2 + y^2 = a^2$ using integration.
 - (b) Find the volume and surface area of the solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 + \cos \theta)$ about its base. 3+3=6

 $\star\star\star$