2024/FYUG/EVEN/SEM/ MATDSC-152T/127

FYUG Even Semester Exam., 2024

MATHEMATICS

(2nd Semester)

Course No.: MATDSC-152T

(Integral Calculus and Vectors)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions:

2×10=20

- 1. Express $\int_a^b f(x) dx$ as the limit of sum.
- 2. Evaluate:

$$\int_{-5}^{5} |x+2| dx$$

3. Prove that

$$\int_0^{2a} f(x) dx = \int_0^a f(x) dx + \int_0^a f(2a - x) dx$$

- 4. If $I_n = \int x^n \cos ax \, dx$ and $J_n = \int x^n \sin ax \, dx$, then show that $aI_n = x^n \sin ax nJ_{n-1}$.
- 5. Evaluate:

$$\int_0^{\pi/2} \cos^6 x \, dx$$

6. Evaluate:

$$\int_0^1 x^2 (1-x)^{3/2} \, dx$$

- 7. Write the formula to find the length of the curve in Cartesian form and polar form.
- 8. The circle $x^2 + y^2 = a^2$ revolves around the axis. Write down the surface area and the volume of the whole surface generated.
- 9. Find the volume generated by revolving about OX, the area bounded by $y = x^3$ between x = 0 and x = 2.
- 10. Prove that

$$\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$$

- 11. Find the value of λ if the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} \hat{k}$ and $\lambda \hat{i} 4\hat{j} + 5\hat{k}$ are coplanar.
- **12.** Find the vector equation of a plane in normal form.
- 13. Show that

$$\frac{d}{dt} \left(\vec{a} \times \frac{d\vec{b}}{dt} - \frac{d\vec{a}}{dt} \times \vec{b} \right) = \vec{a} \times \frac{d^2\vec{b}}{dt^2} - \frac{d^2\vec{a}}{dt^2} \times \vec{b}$$

14. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, then show that

$$\vec{\nabla}r^n = nr^{n-2}\vec{r}$$

15. Show that the vector

$$\vec{V} = (4xy - z^3)\hat{i} + 2x^2\hat{j} - 3zx^2\hat{k}$$

is irrotational.

SECTION-B

Answer any five of the following questions:

10×5=50

5

16. (a) Evaluate:

Lt
$$_{n\to\infty}$$
 $\left[\frac{1^2}{n^3+1^3} + \frac{2^2}{n^3+2^3} + \dots + \frac{n^2}{2n^3}\right]$

(4)

(b) Prove that

$$\int_0^{\pi/2} \log \sin x \, dx = -\frac{\pi}{2} \log 2$$

- 17. (a) Evaluate $\int_0^2 e^x$ as the limit of a sum. 5
 - (b) Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}} = \frac{\pi}{2}$
- **18.** (a) If $I_n = \int_0^{\pi/4} \tan^n \theta \, d\theta$, then show that $I_n = \frac{1}{n-1} I_{n-2}$

Hence find the value of $\int_0^{\pi/4} \tan^6 \theta \, d\theta$.

- (b) Obtain the reduction formula for $\int \sec^n x dx$ 5
- 19. (a) If $I_n = \int_0^{\pi/2} x^n \sin x dx$ and n > 1, then show that

$$I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$$
 5

- (b) Obtain the reduction formula for $\int \sin^m x \cos^n x \, dx$ 5
- **20.** (a) Find the length of the perimeter of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.
 - (b) Find the surface area of the solid generated by revolving the cardioid $r = a(1 \cos \theta)$ about the initial line.
- 21. (a) Prove that the length of one arc of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is 8a.
 - (b) Find the volume generated by the revolution about x-axis of the area bounded by the loop of the curve $y^2 = x^2(2-x)$.
- **22.** (a) (i) If $\vec{\alpha} = 2\hat{i} + 3\hat{j} 5\hat{k}$, $\vec{\beta} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{\gamma} = 4\hat{i} + 2\hat{j} + 6\hat{k}$, then find $(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\gamma}$. 2

(ii) Show that

- $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = [\vec{a} \ \vec{b} \ \vec{c}] \vec{c}$
- (b) (i) Find the vector equation of the line joining the points $\hat{i} 2\hat{j} + \hat{k}$ and $3\hat{k} 2\hat{j}$.

5

5

5

5

(7)

- (ii) Find the vector equation of the sphere with the join of two given points as diameter.
- 23. (a) Show that the equation of the straight line passing through $A(\vec{a})$ and parallel to the unit vector \hat{e} is $(\vec{r} \vec{a}) \times \hat{e} = 0$. Also deduce that the equation of the straight line passing through the origin is $\vec{r} \times \hat{e} = 0$.
 - (b) Find the condition that the two spheres $\vec{r}^2 \vec{r} \cdot \vec{c} + k = 0$ and $\vec{r}^2 2\vec{r} \cdot \vec{c} + k' = 0$ may intersect orthogonally.
- 24. (a) If $\vec{u}(t)$ and $\vec{v}(t)$ be two differentiable functions of the scalar t, then show that

$$\frac{d}{dt}(\vec{u}\times\vec{v}) = \vec{u}\times\frac{d\vec{v}}{dt} + \frac{d\vec{u}}{dt}\times\vec{v}$$

Hence show that $\frac{d}{dt} \left(\overrightarrow{u} \times \frac{d\overrightarrow{u}}{dt} \right) = \overrightarrow{u} \times \frac{d^2\overrightarrow{u}}{dt^2}$.

3+2=5

3

5

(b) If \vec{f} and \vec{g} be two vector point functions, then prove that

grad
$$(\vec{f} \cdot \vec{g}) = \vec{f} \times \text{curl } \vec{g} + \vec{g} \times \text{curl } \vec{f}$$

 $+ (\vec{f} \cdot \vec{\nabla}) \vec{g} + (\vec{g} \cdot \vec{\nabla}) \vec{f}$

(Continued)

25. (a) (i) Show that

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{a}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{a}) - \vec{\nabla}^2 \vec{a}$$

- (ii) Prove that curl (grad \overrightarrow{f}) = $\overrightarrow{0}$.
- (b) Show that a necessary and sufficient condition for a vector $\vec{r} = \vec{f}(t)$ to have constant magnitude is

$$\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$$
 5

3

2

**