CENTRAL LIBRARY N.C.COLLEGE

2024/TDC (CBCS)/EVEN/SEM/ MTMDSC/GEC-201T/231

TDC (CBCS) Even Semester Exam., 2024

MATHEMATICS

(2nd Semester)

Course No.: MTMDSC/GEC-201T

(Differential Equation)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any four of the following questions:

1×4=4

- (a) Is the differential equation $(x^2 + y^2 + x) dx + xy dy = 0$ exact?
- (b) If Mdx + Ndy = 0 is homogeneous and $Mx + Ny \neq 0$, then what is the integrating factor of Mdx + Ndy = 0?

24J/834

(Turn Over)

(c) What is Clairaut's equation?

$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x)$$

then what is the integrating factor of Mdx + Ndy = 0?

(e) Solve
$$(p-1)(p-2) = 0$$
, where $p = \frac{dy}{dx}$.

2. Answer any one of the following questions:

(a) Solve:

$$(2x-y+1)dx+(2y-x+1)dy=0$$

(b) Solve:

$$(p^3-6p^2+11p-6)=0, p=\frac{dy}{dx}$$

3. Answer any one of the following questions:

$$xdx + ydy = a^2 \frac{xdy - ydx}{x^2 + y^2}$$

(ii) Solve
$$y + px = p^2x^4$$
, where $p = \frac{dy}{dx}$.

(b) (i) Solve:

$$\frac{x\,dy - y\,dx}{x^2 + y^2} + xy^2\,dx + x^2y\,dy = 0$$

(ii) Reduce the differential equation (px-y)(x-yp)=2p to Clairaut's form by the substitution $x^2=u$, $y^2=v$ and find its complete solution, where $p=\frac{dy}{dx}$.

UNIT-II

4. Answer any four of the following questions:

1×4=4

- (a) Give an example of second-order linear differential equation with constant coefficient.
- (b) Define linearly dependent solution.
- (c) Verify that $y = e^{4x}$ is one of the solutions of

$$\frac{d^3y}{dx^3} - 64y = 0$$

(4)

- (d) Find the value of $W(e^x, e^{2x})$.
- (e) Verify that $y = \sin x$ is the solution of

$$\frac{d^2y}{dx^2} + y = 0$$

- 5. Answer any one of the following questions: 2
 - (a) Show that $\sin x$ and $\sin x \cos x$ are linearly independent solutions of

$$\frac{d^2y}{dx^2} + y = 0$$

- (b) Show that the Wronskian of $e^{2x}\cos 4x$ and $e^{2x}\sin 4x$ is $4e^{4x}$.
- 6. Answer any one of the following questions: 8
 - (a) (i) Consider the linear differential equation y''(x) + Py'(x) + Qy(x) = 0, where P and Q are either constants or functions of x alone. Then prove that two solutions of the differential equation are linearly dependent iff their Wronskian is zero.

(ii) Consider the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

Show that e^{2x} and e^{3x} are linearly independent solutions of this equation on the interval $-\infty < x < \infty$. Also write the general solution of the given equation.

(b) (i) Consider the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 0$$

Show that the functions e^x , e^{4x} and $2e^x - 3e^{4x}$ are solutions of this equation. Are the solutions e^{4x} and $2e^x - 3e^{4x}$ linearly independent?

(ii) Prove that e^{-x} , e^{3x} and e^{4x} are all solutions of

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 12y = 0$$

Show that they are linearly independent on the interval $-\infty < x < \infty$ and write the general solution.

24J/834

5

UNIT-III

7. Answer any four of the following questions:

1×4=4

(a) Solve:

$$\frac{d^2y}{dx^2} - 8y = 0$$

(b) Solve:

$$\frac{d^2y}{dx^2} = e^{4x}$$

- (c) Find the CF of the differential equation $(D^2 5D + 6)y = e^{3x}$, where $D = \frac{d}{dx}$.
- (d) Find the PI of the differential equation $(D^2 1)y = \cos 2x$, where $D = \frac{d}{dx}$.
- (e) Let the given differential equation be $\phi(D)y = f(x)$. If $f(x) = e^{ax}V$, where V is a function of x, then write its particular integral.

8. Answer any one of the following questions:

(a) Solve
$$(D^2 + 4)y = e^x$$
, $D = \frac{d}{dx}$.

- (b) Solve $(D^2 + 1)y = 0$, given that y = 2, when x = 0 and y = -2, when $x = \pi/2$; $D = \frac{d}{dx}$.
- **9.** Answer any *one* of the following questions:
 - (a) (i) Solve the equation

$$\frac{d^2y}{dx^2} = a + bx + cx^2$$

given that $\frac{dy}{dx} = 0$, when x = 0 and y = d, when x = 0.

- (ii) Solve $(D^3 + 1)y = \cos 2x$, $D = \frac{d}{dx}$.
- (b) (i) Solve: $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = \sin 2x$
 - (ii) Using method of variation of parameters, solve

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$$
 4

2

(9)

UNIT-IV

10. Answer any *four* of the following questions:

- (a) Define total differential equation.
- (b) What do you mean by Cauchy-Euler equation?
- (c) Give an example of Cauchy-Euler differential equation of second order.
- (d) What is the geometrical interpretation of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$?
- (e) Is the equation y dx + x dy + z dy = 0 integrable?
- 11. Answer any *one* of the following questions:
 - (a) Show that $(yz+z^2)dx xzdy + xydz = 0$ is integrable.
 - (b) Solve: $\frac{dx}{uz} = \frac{dy}{xz} = \frac{dz}{xy}$

- **12.** Answer any *one* of the following questions:
 - (a) (i) Solve: $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x \log x$
 - (ii) Solve: (yz + xyz) dx + (zx + xyz) dy+ (xy + xyz) dz = 0
 - (b) (i) Solve: $\frac{dx}{dt} = -\omega y, \frac{dy}{dt} = \omega x$
 - (ii) Solve: $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$

UNIT-V

- 13. Answer any four of the following questions:

 1×4=4
 - (a) What do you mean by partial differential equation?
 - (b) Define order of a partial differential equation.

(10)

Whether the partial differential equation

$$\frac{\partial z}{\partial y} = x \left(\frac{\partial z}{\partial x} \right) + \left(\frac{\partial z}{\partial x} \right)^2$$

is linear or non-linear?

Write the order of the partial differential equation

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 4z$$

- Under what condition, a partial differential equation will be linear?
- 14. Answer any one of the following questions:
 - (a) Form a partial differential equation by eliminating a and b from $z = ax + a^2y^2 + b.$
 - (b) Form a partial differential equation by eliminating arbitrary function from $z = f(x^2 + u^2).$
- 15. Answer any one of the following questions:
 - differential the partial (a) (i) Form equation of all spheres whose centres lie on the x-axis.

- (ii) Obtain the partial differential equation eliminating by arbitrary function f from the relation $z = f\left(\frac{xy}{x}\right)$.
- (i) Obtain the partial differential (b) equation by eliminating arbitrary constants a and b from $\log(az-1)=x+au+b.$
 - (ii) Form a partial differential equation of all planes cutting equal. intercepts from the X and Y axes.