2024/TDC (CBCS)/EVEN/SEM/ MTMHCC-201T/229

TDC (CBCS) Even Semester Exam., 2024

MATHEMATICS

(2nd Semester)

Course No.: MTMHCC-201T

(Real Analysis)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Unit---I

1. Answer any two of the following questions:

 $2 \times 2 = 4$

(a) Define infimum of a set. Find the infimum of the following set:

$$\left\{1+\frac{\left(-1\right)^{n}}{n}:n\in\mathbb{N}\right\}$$

- (b) Show that if B is countable subset of an uncountable set A, then A-B is uncountable.
- (c) State the completeness property of \mathbb{R} .

24J/832

(Turn Over)

(2)

- 2. Answer any one of the following questions: 10
 - (a) (i) State and prove the Archimedean property of real numbers.
 - (ii) If A and B are countable sets, then prove that $A \times B$ is countable. 5
 - (b) (i) If x and y are any real numbers with x < y, then prove that there exists a rational number $r \in \mathbb{Q}$ such that x < r < y.
 - (ii) Define a bounded subset of \mathbb{R} . If A and B are bounded subsets of \mathbb{R} , then prove that $A \cap B$ and $A \cup B$ are also bounded. 1+2+2=5

UNIT-II

3. Answer any two of the following questions:

2×2=4

5

5

- (a) Prove that a finite set has no limit point.
- (b) Give an example to show that an arbitrary union of closed sets may not be closed.
- (c) Show that the set

$$\left\{1, -1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \cdots\right\}$$

is neither open nor closed in R.

- 4. Answer any one of the following questions: 10
 - (a) (i) Prove that the derived set of a set is closed. 5
 - (ii) Show that every open set in \mathbb{R} is a union of open intervals.
 - (b) (i) State and prove Bolzano-Weierstrass theorem for sets. 1+5=6
 - (ii) If A and B are subsets of the set of real numbers, then prove that—
 - (1) $A \subseteq B \Rightarrow D(A) \subseteq D(B)$
 - $(2) D(A \cup B) = D(A) \cup D(B)$

where D(F) denotes the derived set of $F \subset \mathbb{R}$. 2+2=4

UNIT-III

5. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) Show that the sequence $\left\langle \frac{1}{3^n} \right\rangle$ converges to zero.
- (b) Define a bounded sequence in R. Give an example of a sequence which is neither bounded above nor bounded below.

- (c) Give an example of two sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ in \mathbb{R} such that $\langle x_n \rangle$ and $\langle y_n \rangle$ are non-convergent but—
 - (i) their sum $\langle x_n + y_n \rangle$ converges;
 - (ii) their product $\langle x_n y_n \rangle$ converges.
- 6. Answer any one of the following questions: 10
 - (a) (i) Prove that every convergent sequence of real numbers is bounded. Give an example to show the converse of the above result is not true.

 3+2=5
 - (ii) Show that the sequence $\langle x_n \rangle$ defined by $x_n = \sqrt{n+1} \sqrt{n}$, $\forall n \in \mathbb{N}$ is convergent.
 - (b) (i) State and prove monotone convergence theorem. 1+5=6
 - (ii) Prove that a sequence in R can have at most one limit.

ж.,

UNIT-IV

7. Answer any two of the following questions:

2×2=4

- (a) Prove that the sequence $\{\frac{1}{n}\}$ is a Cauchy sequence.
- (b) Give an example of an unbounded sequence that has a convergent subsequence.
- (c) State monotone subsequence theorem.
- 8. Answer any one of the following questions: 10
 - (a) (i) State and prove Bolzano-Weierstrass theorem for sequences.

1+5=6

- (ii) Define a Cauchy sequence in \mathbb{R} . Prove that the sequence (n) is not a Cauchy sequence in \mathbb{R} . 1+3=4
- (b) (i) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence. 6
 - (ii) Show that the sequence (x_n) , where

$$x_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$

cannot converge.

4

(6)

UNIT-V

9. Answer any two of the following questions:

 $2 \times 2 = 4$

(a) Show that the series

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$$

is not convergent.

- (b) State Leibnitz test.
- (c) Define conditional convergent series.

 Give an example of it.
- 10. Answer any one of the following questions: 10
 - (a) (i) If a series in R is absolutely convergent, then prove that it is convergent.
 - (ii) Test for convergence of the following series: 3×2=6

$$(1) \frac{\alpha}{\beta} + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)} + \cdots$$

(2)
$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \cdots$$

. (7)

(b) (i) Prove that the positive termed geometric series $1+r+r^2+\cdots$ converges for r<1, and diverges to $+\infty$ for $r\geq 1$.

(ii) Prove that the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}, \ p > 0$$

converges for p > 1 and diverges for $p \le 1$.

5

5

* **