2024/TDC (CBCS)/EVEN/SEM/ PHSHCC-602T/096

TDC (CBCS) Even Semester Exam., 2024

PHYSICS

(6th Semester)

Course No.: PHSHCC-602T

(Statistical Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-1

- 1. Answer any two questions from the following: 2×2=4
 - (a) What is phase space?
 - (b) Explain the term 'macrostate' with example.
 - (c) What do you understand by entropy?

24J/727

(Turn Over)

(2)

2.	Ans	wer either [(a) and (b)] or [(c) and (d)]:	6
	(a)	Distinguish among microcanonical, canonical and grand canonical ensembles.	3
	(b)	Write a short note on partition function.	3
	(c)	What do you understand by Gibbs' paradox? State the law of equipartition of energy.	:4
	(d)	What does the Sackur-Tetrode equation describe?	2
		Unit—2	
3. Answer any <i>two</i> questions from following:			= 4
	(a)	What do you understand by black-body radiation?	
	(b)	Explain briefly Wien's distribution law.	
	(c)	Briefly describe Saha's ionization formula.	
4.	Ans	swer either [(a) and (b)] or [(c) and (d)]:	6
	(a)	State two properties of thermal radiation.	2
	(b)	State and explain Kirchhoff's radiation law.	4
		- (Comtinue	at i

	(c)	Explain Wien's distribution law.	3		
	(d)	Discuss ultraviolet catastrophe in brief.	3		
		Unit—3			
5.		wer any <i>two</i> questions from the wing:	= 4		
	(a)	State Planck's quantum postulates.			
	(b)	Explain briefly Planck's law of black-body radiation.			
	(c)	Explain Stefan-Boltzmann law.			
6.	Answer either [(a) and (b)] or [(c) and (d)]: 6				
	(a)	What do you understand by spectral distribution of black body radiation?	3		
	(b)	Discuss how Planck's radiation law was verified experimentally.	3		
	(c)	Starting from Planck's radiation law, deduce Wien's distribution law.	3		
	(d)	Derive Stefan-Boltzmann law from Planck's law of radiation.	3		
		Unit4			
7.		wer any two questions from the wing: 2×2^{2}	=4		
	(a)	Briefly explain Bose-Einstein condensation.			
4J/	727	(Turn Ove	r)		

4)

(b)	What	is	liquid	helium?
-----	------	----	--------	---------

State two basic assumptions of Bose-Einstein statistics.

8. Answer either (a) or (b):

(a) Derive an expression for the most probable distribution of a system of **Bose-Einstein** particles obeying statistics.

(b) Describe the thermodynamic functions of photon gas.

UNIT-5

- two questions 9. Answer any from following: $2 \times 2 = 4$
 - What is Fermi energy?
 - What are white dwarf stars?
 - Explain briefly what do you understand by Chandrasekhar mass limit.
- **10.** Answer either [(a) and (b)] or [(c) and (d)] : 6
 - (a) What is electron gas?

(Continued)

1

6

6

6

Describe Fermi-Dirac distribution and show qualitatively that it accounts for the anomaly of specific heat of electrons in metals.

5

3

Explain in brief what do you mean by Fermi surface.

(d) Calculate the Fermi energy at 0 K of metallic silver containing one free electron per atom. The density of silver is 10.5 g/cm3 and its atomic 3 weight is 108.

* * *

2024/TDC (CBCS)/EVEN/SEM/ PHSHCC-602T/096