2024/TDC (CBCS)/EVEN/SEM/ PHSHCC-601T/095

TDC (CBCS) Even Semester Exam., 2024

PHYSICS

(6th Semester)

Course No.: PHSHCC-601T

(Electromagnetic Theory)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two of the following questions:

2×2=4

- (a) What is displacement current density?

 Is it linked with the motion of free charges?
- (b) Mention the advantage and disadvantage of Coulomb gauge.
- (c) State Poynting theorem.

24J/726

(Turn Over)

2.	Ans	wer either [(a) and (b)] or [(c) and (d)]: 6
	(a)	Write down Maxwell's equations of electromagnetism.
	(b)	Explain the physical significance of each equation.
	(c)	What do you mean by scalar and vector potentials?
	(d)	Explain gauge transformation. Discuss Lorentz gauge. 2+2=4
		. Unit—II
3.	Ans	wer any <i>two</i> of the following questions: $2\times2=4$
	(a)	Show that wave impedance of free space is $120 \pi \Omega$.
	(b)	Mention two characteristics of plasma.

- (c) What is Van Allen radiation belt?
- 4. Answer either [(a) and (b)] or [(c) and (d)]: 6
 - (a) Starting from Maxwell's equations, show that in a dielectric medium—

(i)
$$\nabla^2 \vec{E} = \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

(ii)
$$\nabla^2 \vec{H} = \mu \epsilon \frac{\partial^2 \vec{H}}{\partial t^2}$$

21/2+21/2=5

(b) What is the relation between refractive index and dielectric constant?

(c) What do you mean by skin depth? Calculate the frequency at which the skin depth in sea water is 1 m. (Given, $\sigma = 4.3 \text{ mho m}^{-1}$ and $\mu = 4\pi \times 10^{-7} \text{ H m}^{-1}$)

2+2=4

(d) Explain relaxation time.

2

1

UNIT-III

- 5. Answer any two of the following questions: $2\times2=4$
 - (a) State the laws of reflection of electromagnetic waves.
 - (b) Explain total internal reflection.
 - (c) What is an evanescent wave?
- **6.** Answer either (a) or (b):
 - (a) Derive Fresnel's formulae for reflection and refraction of electromagnetic waves at a plane boundary separating two dielectric media when the incident wave is polarized with \vec{E} perpendicular to the plane of incidence.

6

24J/726

(4)

(b) Define reflection and transmission coefficients. What is the sum of reflection and transmission coefficients? State Brewster's law of polarization. Mention one practical application of Brewster's law. 2+1+2+1=6

UNIT-IV

7. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) State the differences between uniaxial and biaxial crystals.
- (b) Explain double refraction.
- (c) Mention two uses of Babinet compensator.
- 8. Answer either (a) or (b):

6

- (a) Describe the construction of Nicol prism. Discuss the action of Nicol prism as a polariser. 3+3=6
- (b) What is a quarter-wave plate? How can it be used to produce circularly polarized light? Calculate the thickness of quarter wave plate for light of wavelength 5893 Å. (Given, $\mu_o = 1.544$, $\mu_e = 1.553$) 2+2+2=6

UNIT-V

9. Answer any two of the following questions:

 $2 \times 2 = 4$

б

3

3

4

2

- (a) What do you mean by wave guide?
- (b) Mention two advantages of wave guide.
- (c) Distinguish between single and multiple mode optical fibres.
- 10. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Distinguish between group velocity and phase velocity of guided waves.
 - (b) Find the relationship between phase velocity and group velocity.
 - (c) Obtain expression for numerical aperture of an optical fibre.
 - (d) Numerical aperture of an optical fibre is 0.5 and core refractive index is 1.48. Find the cladding refractive index.

24J—320**/726**

2024/TDC (CBCS)/EVEN/SEM/ PHSHCC-601T/095