CENTRAL LIBRARY N.C.COLLEGE

2024/FYUG/EVEN/SEM/ ECODSC-151T/011

FYUG Even Semester Exam., 2024

ECONOMICS

(2nd Semester)

Course No.: ECODSC-151T

(Elementary Mathematics for Economics)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions:

2×10=20

- 1. Define set. Give an example of null set.
- 2. Mention two conditions of continuity of a function.

24J/1048

(Turn Over)

(2)

3. If

$$A = \{1, 2, 3, 4\}$$

 $B = \{6, 7, 8\}$

find $A \cap B$.

- 4. Define symmetric matrix.
- 5. Distinguish between singular matrix and non-singular matrix.
- 6. Find rank of the matrix

$$A = \begin{bmatrix} 8 & 7 & 0 \\ 0 & 7 & 3 \\ 2 & 5 & 2 \end{bmatrix}$$

- 7. What is convex function?
- **8.** Differentiate $y = a^x$.
- 9. Mention the order conditions for maximumminimum values.

- 10. Define total derivative.
- 11. Find partial derivatives of z = (x+4)(2x+5y).
- 12. Find the total differential of $z = \sqrt{x+y}$.
- 13. Define integration.
- 14. The marginal cost function of a product is $(1+x+6x^2)$. Find the total cost function if the fixed cost is 700.
- 15. Integrate the following:
 - (a) $\int 1 dx$
 - (b) $\int \frac{1}{x} dx$

SECTION—B

Answer any five of the following questions:

10×5=50

16. (a) Let $A = \{1, 2\}$, $B = \{0, 2\}$ and $C = \{2, 3\}$. Prove that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

(4)

(5)

- (b) Illustrate the concept of Cartesian product with example.
- (c) Suppose $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, define a relation R from A to A by $R = \{(x, y) : y = x + 1\}$. What are its domain and range? 3+3+(2+2)=10
- 17. (a) Find the limit of the following functions:

(i) Lt
$$5x^2 + 4x^4$$

 $5x^2 - 4x^4$

(ii) Lt
$$\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$

(b) Show that

Lt
$$\underset{x\to 0}{e^x-1} = 1$$
 (3+3)+4=10

18. (a) Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$$

(b) If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

find $A^2 - 5A + 7I$

(c) If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$

show that (A')' = A

5+3+2=10

19. (a) The IS and LM equations can be reduced to the following:

$$0.4Y + 150i = 209$$

$$0.1Y - 250i = 35$$

Find the equilibrium level of income \overline{Y} and rate of interest \overline{i} .

- (b) Illustrate:

 Diagonal matrix, Triangular matrix,
 Orthogonal matrix, Scalar matrix and
 Identity matrix.

 5+5=10
- 20. (a) Differentiate the following:

(i)
$$y = \frac{1}{\sqrt{8x^3 + 5x}}$$

(ii)
$$y = (x^2 + 3)(2x^2 + 7)^3$$

- (b) Find the second-order derivative of $y = \log(ax^2 + bx + c)$
- (c) If the demand law is $x = \frac{20}{p+1}$, find elasticity of demand (E_d) with respect to price at point p = 3. (2+2)+3+3=10

(7)

(6)

21. (a) Find $\frac{d^2y}{dx^2}$:

$$u = 15x^3 - 9x^2 - 8x$$

- (b) The cost function for x units of a product produced and sold by a firm is $C(x) = 250 + 0.005 x^2$ and the total revenue is given as R = 4x. Find how many items should be produced to maximize the profit. What is the maximum profit? 2+(5+3)=10
- 22. (a) If the utility function is $u = \log(ax_1 + bx_2 + c\sqrt{x_1x_2})$ obtain the ratio of marginal utilities.
 - (b) Given $z = x^3 e^{2y}$. Find all the partial derivatives of second order.
 - (c) Mention the conditions of Hessian determinant for maximization and minimization of two-variable case.

4+3+3=10

23. A firm's production function is $Q = 5L^{0.7}K^{0.3}$. The price of labour is 7 1 per unit and the price of capital is 7 2 per unit. Find the minimum cost combination of capital and labour for an output rate of 20.

- 24. (a) Distinguish between definite integral and indefinite integral.
 - (b) Evaluate the following: $I = \int x^2 \log x \, dx$
 - (c) Evaluate the following:

 $\int_{2}^{6} 2x \, dx \qquad \qquad 4 + 4 + 2 = 10$

- 25. (a) The marginal cost and marginal revenue of a firm are given as

 MC = 4 + 0 · 08x, MR = 12

 Compute the total profit, given that fixed cost is zero.
 - (b) If the demand law is $p = 85-4x-x^2$, what will be the consumer's surplus if (i) $x_0 = 5$ and (ii) $p_0 = 64$? 5+5=10

* * *