2024/TDC (CBCS)/EVEN/SEM/ CHMHCC-202T/300

TDC (CBCS) Even Semester Exam., 2024

CHEMISTRY

(2nd Semester)

Course No.: CHMHCC-202T

(Physical Chemistry)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two questions:

2×2=4

- (a) Define state and path function and give one example of each.
- (b) State the first law of thermodynamics. Why is it also called the law of conservation of energy?
- (c) Define standard state of formation. Give one example.

24J**/903**

(Turn Over)

2. Answer any one question:

6

2

2

 $2 \times 2 = 4$

- (a) (i) Distinguish between isothermal and adiabatic process. Derive a relation between temperature and volume in reversible adiabatic expression. 1+3=4
 - (ii) One mole of an ideal gas expands against a constant external pressure of 1 atm from a volume of 10 dm³ to a volume of 30 dm³. Calculate the work done by the gas in Joules.
- (b) (i) Derive the expression for the work done in reversible isothermal work.
 - (ii) The enthalpy of combustion of glucose $C_6H_{12}O_6$ (s) is -2816 kJ mol⁻¹ at 25 °C. Calculate $\Delta H_{\rm f}^{\circ}$ ($C_6H_{12}O_6$). The $\Delta H_{\rm f}^{\circ}$ values for CO_2 (g) and H_2O (l) are -393.5 kJ mol⁻¹ and -285.9 kJ mol⁻¹ respectively.

UNIT-II

- 3. Answer any two questions:
 - (a) Explain the limitation of first law of thermodynamics.

- (b) Show that $\left(\frac{\delta T}{\delta V}\right)_{S} = -\left(\frac{\delta P}{\delta S}\right)_{V}$.
- (c) State and explain Joule-Thomson coefficient.
- 4. Answer any one question:
 - (a) (i) Derive an expression for second law of thermodynamics.
 - (ii) Obtain an expression for change in entropy of an ideal gas with change in pressure and temperature.
 - (b) (i) State third law of thermodynamics and explain its significance.
 - (ii) Define the following terms: 1½×2=3
 - (1) Residual entropy
 - (2) Inversion temperature

UNIT-III

5. Answer any two questions:

2×2=4

(Turn Over)

6

3

3

3

- (a) Define partial molar entropy and partial molar enthalpy.
- (b) Explain the importance of chemical potential.
- (c) Derive an expression for Gibbs-Duhem equation.

6. Answer any one question:

- 6
- Derive an expression for chemical potential of ideal gas mixture in terms of pressure, concentration and molefraction.
- (b) (i) Discuss the variation of free energy change with temperature and pressure.
 - (ii) Show that $\left(\frac{\delta\mu_i}{\delta T}\right)_{B=N} = -\overline{S}_i$. 2

UNIT--IV

7. Answer any two questions:

2×2=4

- Explain the term 'fugacity'.
- Explain the thermodynamic condition for spontaneity of a reaction.
- What will be the effect of temperature on the following reaction?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

 $\Delta H = -92.38 \text{ kJ}$

Answer any one question:

6

(a) (i) Explain coupling of excergic and endoergic reactions with suitable example.

24J/903

- (ii) Explain Le Chatelier's principle with a suitable example.
- (i) Derive a relation among K_p , K_x (b) and K_{c} .
 - (ii) Derive van't Hoff reaction isotherm.

2

4

б

UNIT-V

- 9. Answer any two questions: $2 \times 2 = 4$
 - State and explain Raoult's law.
 - Explain depression of freezing point with an example.
 - Explain reverse osmosis.
- 10. Answer any one question:

Derive an expression for osmotic pressure and explain how it can be used for determining molar mass of non-4+2=6 volatile solute.

between Derive a relation depression of freezing point of a solution and the mole fraction of dissolve solute. What is molal freezing point constant of 4+2=6 a solvent?

**

2024/TDC (CBCS)/EVEN/SEM/ CHMHCC-202T/300

(Continued)

24J-310/903