CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/ODD/SEM/ PHSDSC/GE-301T/154

TDC (CBCS) Odd Semester Exam., 2023

PHYSICS

(3rd Semester)

Course No.: PHSDSC/GE-301T

(Thermal Physics and Statistical Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer *fifteen* questions, taking any *three* from each Unit: 1×15=15

UNIT-I

- 1. State zeroth law of thermodynamics.
- 2. Why has a gas two specific heats?

(Turn Over)

(2)

- **3.** The conduction of heat from cold body to hot body is reversible or irreversible. Why?
- **4.** Which thermodynamic process is also called isentropic process?

UNIT-II

- 5. Write the equation of enthalpy in terms of internal energy, pressure and volume of the system.
- 6. Define Gibbs function (G).
- 7. Define Helmholtz function.
- 8. Write Clausius-Clapeyron equation.

Unit-III

- 9. State Boltzmann law of equipartition of energy.
- 10. Define mean-free-path of a gas molecule.
- 11. Explain the conduction and diffusion in vertical cases.
- 12. What do you mean by transport phenomena?

UNIT-IV

- 13. What is blackbody radiation?
- 14. State Wien's distribution law.
- 15. What is the condition for a body to be perfectly blackbody?
- 16. State Stefan's law.

UNIT---V

- 17. Define phase space.
- 18. Define microstate.
- 19. Write down the relation between entropy and thermodynamic probability.
- 20. Who formulated quantum statistics?
- 24J**/170**

(4)

SECTION-B

Answer *five* questions, taking *one* from each Unit: 2×5=10

UNIT--I

- **21.** How does entropy change in cases of reversible and irreversible process?
- **22.** Why is C_p greater than C_{ν} ?

UNIT-II

- **23.** Find the value of C_p/C_v for diatomic gas molecules.
- 24. Explain Joule-Thomson effect.

UNIT---III

- 25. State the assumptions of kinetic theory of gases.
- **26.** How does mean-free-path vary with temperature and pressure?

(5)

UNIT-IV

- 27. What are the assumptions made by Planck to deduce Planck's radiational law?
- 28. Obtain Wien's displacement law from Planck's law.

UNIT---V

- 29. Name the particle which have zero or integral spin. Give one example of such particle.
- **30.** What are the assumptions of MB-distribution?

SECTION-C

Answer *five* questions, taking *one* from each Unit: 5×5=25

Unit—I

31. Find the work done in an adiabatic expansion of an ideal gas.

(6)

32. A Carnot engine has an efficiency of 30% when temperature of the sink is 27 °C. What must be the change in temperature of the source to make the efficiency 50%?

UNIT-II

- **33.** Derive both the *TdS* equations.
- **34.** Show that $C_p C_v = R/J$, where the symbols have their usual meanings.

UNIT---III

- 35. Using the law of equipartition of energy, find the expression for C_p and C_v for monoatomic and diatomic gases.
- 36. Deduce Clausius-Clapeyron equation using Maxwell's relation.

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

UNIT-IV

- 37. Deduce Planck's radiation law.
- 38. Draw and explain the energy distribution curve of blackbody radiation.

(7)

UNIT-V

- 39. Derive Fermi-Dirac distribution law for an assembly of fermions.
- **40.** Establish the relation $S = K \log \Omega$.

* * *