CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/ODD/SEM/ PHSHCC-101T/148

TDC (CBCS) Odd Semester Exam., 2023

PHYSICS

(Honours)

(1st Semester)

Course No.: PHSHCC-101T

(Mathematical Physics—I)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer ten questions, selecting any two from each
Unit: 2×10=20

UNIT-I

- 1. Explain transpose of a matrix with an example.
- 2. If A and B are non-singular matrices of same order, then show that

$$(AB)^{-1} = B^{-1}A^{-1}$$

(2)

3. Solve the differential equation:

$$9\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + y = 0$$

Also find its Wronskian to show that its two solutions are independent.

UNIT-II

4. Prove that

$$\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = 0$$

- 5. For vector $\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$, find the divergence.
- **6.** Find a unit vector perpendicular to both of the vectors $\vec{A} = 2\hat{i} 3\hat{j} + \hat{k}$ and $\vec{B} = 7\hat{i} 5\hat{j} + \hat{k}$.

UNIT-III

- 7. State Stokes' theorem.
- 8. Calculate the volume integral of $(\vec{\nabla} \cdot \vec{r})$ over the volume enclosed by a sphere of radius a, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

9. Find the directional derivative of

$$\phi = x^3 + y^3 + z^3$$

at the point (1, -1, 2) in the direction of the vector $\hat{i} + 2\hat{j} + \hat{k}$.

UNIT-IV

- 10. Write the expression for Laplacian of a scalar in orthogonal curvilinear coordinates.
- 11. Write the expression for volume element in spherical polar coordinate system.
- 12. Write the expression for gradient of a scalar field in spherical polar coordinate system.

13. Find the standard deviation of the following set of data:

- 14. What is meant by probability? Write the expression for probability function for binomial distribution.
- 15. What do you mean by independent random variables?

(4)

(5)

SECTION-B

Answer five questions, selecting one from each Unit: $6\times5=30$

UNIT-I

16. Find the eigenvalues and eigenvectors of the following matrix :

 $\begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

17. (a) Find the integrating factor and hence solve the differential equation

$$\frac{dy}{dx} + xy = 2x$$

(b) Write the order and the degree of the differential equation

$$\frac{d^2y}{dx^2} + a^2x = 0$$

Unit-II

18. (a) If $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$, then show that \vec{A} and \vec{B} are mutually perpendicular.

- (b) A particle moves from point (4, -3, -5) metre to point (-1, 4, 3) metre under the action of force $\vec{F} = (-3\hat{i} \hat{j} + 2\hat{k})$ N. Find the work done by the force.
- 19. (a) Prove that for every field \vec{v} , div curl $\vec{v} = 0$.
 - (b) Calculate the curl of the vector $xyz\hat{i} + 3x^2y\hat{j} + (xz^2 y^2z)\hat{k}$ 3

UNIT--III

- 20. State and prove Gauss's divergence theorem.
- 21. If $\overrightarrow{F} = \overrightarrow{\nabla} \phi$ everywhere in a region R and ϕ is single-valued and has continuous derivatives in R, then show that

$$\int_A^B \vec{F} \cdot d\vec{r}$$

is independent of the path joining the points A and B.

UNIT-IV

22. Find the gradient of $\phi = xyz$ in cylindrical coordinate system. Find the location of the positive roots of $x^3 - 9x + 1 = 0$, and evaluate the smallest one by bisection method correct to two decimal places. 3+3=6

3

3

6

6

3

CENTRAL LIBRARY N.C.COLLEGE

(6)

23. Derive the expression for curl of a vector in orthogonal curvilinear coordinates. 6

UNIT-V

- 24. Show that mean and variance are equal inPoisson's distribution.6
- 25. What is conditional probability? State and prove Bayes' theory. 2+4=6

* * *