CENTRAL LIBRARY N.C.COLLEGE

2023/FYUG/ODD/SEM/ MATDSC-102T/141

FYUG Odd Semester Exam., 2023 (Held in 2024)

MATHEMATICS

(1st Semester)

Course No.: MATDSC-102T

(Differential Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer ten questions, selecting two from each Unit: 2×10=20

UNIT-I

- 1. Find the value of Lt $\left(\frac{1}{\sin x} \frac{1}{\tan x}\right)$.
- 2. Find the points of discontinuity of the function $\frac{x^2+2x+5}{x^2-8x+12}$.

(3)

(2)

3. Find the derivative of $\frac{\sin x}{x}$.

UNIT-II

- 4. Evaluate Lt $\underset{x\to 0}{\text{Lt}} \frac{(e^x-1)\tan^2 x}{x^2}$.
- 5. Find y_n if $y = \sin^3 x$.
- 6. Find the range of values of x for the function

$$x^3 - 3x^2 - 24x + 30$$

UNIT-III

- 7. Write down the Cauchy's form of remainder in Taylor's expansion.
- 8. Write down the geometrical interpretation of mean value theorem.
- 9. Is Rolle's theorem applicable for the function $f(x) = \tan x$ in $(0, \pi)$?

UNIT-IV

10. Write down the condition of orthogonality of the curves f(x, y) = 0, $\phi(x, y) = 0$.

- 11. What is the geometrical meaning of $\frac{dy}{dx}$?
- 12. Write down the formula for polar subtangent and polar subnormal of the curve $r = f(\theta)$.

UNIT-V

- 13. What do you mean by point of inflection?
- **14.** When is a function said to be a homogeneous function?
- 15. What do you mean by asymptote of a curve?

SECTION-B

Answer *five* questions, selecting *one* from each Unit: 10×5=50

UNIT---I

- 16. (a) What do you mean by removable discontinuity? Show that a function which is continuous throughout a closed interval is bounded therein. 2+4=6
 - (b) Show that $\lim_{x\to 0} \frac{1}{x}$ does not exist.

24J/**580**

Turn Over)

(4)

(5)

17. (a) Define continuity of a function. A function f(x) is defined as

$$f(x) = 3 + 2x$$
 for $-\frac{3}{2} \le x < 0$
= $3 - 2x$ for $0 \le x < \frac{3}{2}$
= $-3 - 2x$ for $x \ge \frac{3}{2}$

Show that f(x) is continuous at x = 0 and discontinuous at $x = \frac{3}{2}$. 2+4=6

(b) Find the derivative of x^x from first principle.

UNIT-II

18. (a) State L'Hospital theorem. Evaluate

Lt
$$(\cos x)^{\cot^2 x}$$
 2+4=6

- (b) If $y = \frac{1}{x^2 + a^2}$, then find y_n .
- 19. (a) If the area of a circle increases at a uniform rate, then show that the rate of increase of the perimeter varies inversely as the radius.
 - (b) If $y = \sin(m\sin^{-1}x)$, then show that— (i) $(1-x^2)y_2 - xy + m^2y = 0$; (ii) $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$

2+3=5

3

(Continued)

(c) Find the *n*th derivative of $\frac{1}{x^2 - a^2}$.

UNIT-III

20. (a) Prove that

$$Lt_{x\to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a)$$

provided f''(x) is continuous.

- (b) Expand $\log(1+x)$ in powers of x in infinite series stating each of the condition under which the expansion is valid.
- (c) State Rolle's theorem.
- 21. (a) If $f(x) = x^2$, $\phi(x) = x$, then find a value of ξ in terms of a and b in Cauchy's mean value theorem.
 - (b) If

$$f(x) = \begin{vmatrix} \sin x & \sin \alpha & \sin \beta \\ \cos x & \cos \alpha & \cos \beta \\ \tan x & \tan \alpha & \tan \beta \end{vmatrix}, \quad 0 < \alpha < \beta < \frac{\pi}{2}$$

then show that $f'(\xi) = 0$, where $\alpha < \xi < \beta$.

24J**/580**

(Turn Over)

4

2

3

24J**/580**

(c) In the mean value theorem

$$f(x+h)+f(x)+hf'(x+\theta h)$$

find θ , where $f(x) = \frac{1}{x}$.

3

3

UNIT-IV

22. (a) If $x\cos\alpha + y\sin\alpha = P$ touch the curve $\frac{x^m}{a^m} + \frac{y^m}{b^m} = 1$, then show that

$$(a\cos\alpha)^{\frac{m}{m-1}} + (b\sin\alpha)^{\frac{m}{m-1}} = P^{\frac{m}{m-1}}$$

- (b) Find the angle of intersection of the curves $r = a\sin 2\theta$, $r = a\cos 2\theta$.
- (c) Show that in any curve

$$\frac{\text{subnormal}}{\text{subtangent}} = \left(\frac{\text{length of normal}}{\text{length of tangent}}\right)^2$$

- 23. (a) Show that the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin \theta$ cut orthogonally.
 - (b) (i) Find $\frac{dS}{d\theta}$ of the curve $r = a(1 + \cos \theta)$. (ii) Find $\frac{dS}{dr}$ of the curve $r = a\theta$. 2+2=4
 - (c) Find the polar subtangent of $r = ae^{\theta \cot \alpha}$.

UNIT-V

24. (a) If $u = x\phi\left(\frac{y}{x}\right) + \psi\left(\frac{y}{x}\right)$, then show that—

(i) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = x\phi\left(\frac{y}{x}\right)$ (ii) $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = 0$ 2+4=6

(b) Find the asymptotes of the curve $2x(y-5)^2 = 3(y-2)(x-1)^2$

- **25.** (a) State and prove Euler's theorem on homogeneous function f(x, y). 1+3=4
 - (b) If u = F(y-z, z-x, x-y), then prove that

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$

(c) Find the asymptotes of the curve

24J-350**/580**

$$x(x-y)^2 - 3(x^2 - y^2) + 8y = 0$$
 3

**

2023/FYUG/ODD/SEM/ MATDSC-102T/141