CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/ODD/SEM/ MTMDSC/GE-101T/304

TDC (CBCS) Odd Semester Exam., 2023

MATHEMATICS

(1st Semester)

Course No.: MTMDSC/GE-101T

(Differential Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer twenty questions, selecting four from each
Unit: 1×20=20

IJNIT-I

- 1. Define ε - δ definition of limit of a function.
- 2. What is the value of $\lim_{x\to 0} x \sin \frac{1}{x}$?
- 3. Does $\lim_{x\to 0} \frac{|x|}{x}$ exist?

(2)

- 4. What is the value of $\lim_{x\to 0} \frac{(1+x)^n-1}{x}$?
- 5. Consider the function

$$f(x) = \begin{cases} x+1, & x \le 3 \\ x^3, & x > 3 \end{cases}$$

Does $\lim_{x\to 3} f(x)$ exist?

UNIT-II

6. A function f(x) is defined as follows:

$$f(x) = \begin{cases} \frac{1}{2} - x, & \text{when } 0 < x < \frac{1}{2} \\ \frac{1}{2}, & \text{when } x = \frac{1}{2} \\ \frac{3}{2} - x, & \text{when } \frac{1}{2} < x < 1 \end{cases}$$

Is f(x) continuous at $x = \frac{1}{2}$?

- 7. A function is continuous throughout a closed interval. Is it bounded therein?
- 8. Find $\frac{d}{dx}(x^{\frac{1}{2}} + x \log x + 3 \sin^{-1} x)$.
- 9. Give an example of a function which is continuous but not differentiable.
- 10. Find the points where the function $f(x) = \frac{1}{\log |x|}$ is discontinuous.

(Continued)

UNIT-III

- 11. Find y_n , when $y = \sin(ax + b)$.
- 12. State Leibnitz's theorem.
- 13. If $y = a\cos(\log x) + b\sin(\log x)$, then show that $x^2y_2 + xy_1 + y = 0$
- 14. State Euler's theorem on homogeneous function in two variables.
- **15.** If $u = x^3 + x^2y^2 + y^3$, then find $\frac{\partial^2 u}{\partial x \partial y}$.

UNIT---IV

- **16.** Write the equation of the tangent to the curve y = f(x) at x = a.
- 17. Find the length of the Cartesian subtangent of the curve $y = e^{-x/2}$.
- 18. Find the radius of curvature of $S = a(e^{im\psi} 1)$, at any position ψ .
- 19. What is the gradient of the normal to the curve $y^2 = 4x$ at (1, 2)?

(5)

20. What is the angle between the two curves $y = x^2$ and $y^2 = x$ intersecting at a point (1, 1)?

UNIT-V

- 21. State Rolle's theorem.
- 22. State True or False:
 "f(c) is an extreme value if and only if f'(c) = 0."
- 23. Evaluate $\lim_{x\to\infty}\frac{x^4}{e^x}$.
- 24. Write $\sin x$ in ascending powers of x.
- 25. Write down Lagrange's form of remainder in Taylor's theorem.

SECTION-B

Answer five questions, selecting one from each Unit: 2×5=10

Unit-I

(Continued)

26. Show that $\lim_{x\to 0} e^{1/x}$ does not exist.

27. Evaluate $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.

UNIT-II

- 28. Let f(x+y) = f(x) + f(y) for all x, y and f'(0) exist. Prove that f'(x) = f'(0) for all $x \in R$.
- 29. Find f(0) so that $f(x) = x \sin \frac{\pi}{x}$ for $x \neq 0$ may be continuous at x = 0.

UNIT-III

- **30.** If $y = \frac{x}{x+1}$, then show that $y_5(0) = 5$.
- 31. If $f(x, y) = x^3y + e^xy^2$, show that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

UNIT-IV

- 32. Find the point on the curve $y = x^3 6x + 7$ when the tangent is parallel to the straight line y = 6x + 1.
- 33. Find the length of the polar subtangent for the curve $r = a(1 + \cos \theta)$ at $\theta = \frac{\pi}{2}$.

24J**/304**

(Turn Over)

(6)

UNIT-V

- 34. Evaluate $\lim_{x\to 1} \frac{\log(1-x)}{\cot(\pi x)}$.
- 35. Examine whether Lagrange's mean value theorem can be applied to the function f(x) = |x| in the interval [-1, 1].

SECTION-C

Answer *five* questions, selecting *one* from each Unit: 8×5=40

UNIT-I

- 36. (a) If $\lim_{x\to a} f(x) = l$, then prove that $\lim_{x\to a} |f(x)| = |l|$ Give an example to show that the converse of the above result may not be
 - converse of the above result may not be true. 3+2=5
 - (b) Show that $\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2} = \frac{2}{\pi}$ 3
- 37. (a) Prove that if $\lim_{x\to a} f(x)$ exists, then the limit is unique.

- (b) Find the values of the following: 2×2=4
 - (i) $\lim_{x\to 0}\frac{1-\cos x}{x^2}$
 - (ii) $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{\tan x} \right)$

UNIT-II

38. (a) Show that the function

$$f(x) = |x| + |x-1| + |x-2|$$

is continuous at the point x = 0, 1, 2.

(b) Show that the function

$$f(x) = \begin{cases} x^2 \cos(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is continuous at x = 0, but has no derivative there.

39. (a) Find the values of a and b such that the function

$$f(x) = \begin{cases} x + \sqrt{2} a \sin x , & 0 \le x \le \frac{\pi}{4} \\ 2x \cot x + b , & \frac{\pi}{4} \le x \le \frac{\pi}{2} \\ a \cos 2x - b \sin x , & \frac{\pi}{2} \le x \le \pi \end{cases}$$

is continuous for all values of x in the interval $0 \le x \le \pi$.

3

5

4

(8)

(b) If

$$f(x) = \begin{cases} x & , & 0 < x < 1 \\ 2 - x & , & 1 \le x \le 2 \\ x - \frac{1}{2}x^2, & x > 2 \end{cases}$$

then show that f(x) is continuous at x = 1 and x = 2, and that f'(2) exists, but f'(1) does not.

UNIT-III

- **40.** (a) If $y = e^{2\sin^{-1}x}$, then prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2+4)y_n = 0$ Also show that $(y_7)_0 = 2 \cdot 5 \cdot 13 \cdot 29$. 3+1=4
 - (b) If $u = \frac{x^2y^2}{x+y}$, apply Euler's theorem to find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ and hence deduce that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 6u$$

41. (a) If
$$y = \frac{x^2 + 1}{(x-1)(x-2)(x-3)}$$
, then find y_n .

(9)

(b) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then show that

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$$

4

4

4

4

(c) Verify Euler's theorem for the function $f(x) = ax^2 + 2hxy + by^2$

UNIT-IV

- 42. (a) If the normal to the curve $x^{2/3} + y^{2/3} = a^{2/3}$ makes an angle ϕ with the x-axis, then show that its equation is $y\cos\phi x\sin\phi = a\cos 2\phi$.
 - (b) Find the radius of curvature of $y = xe^{-x}$ at its maximum point.
- **43.** (a) For the parabola $y^2 = 4ax$, show that the subtangent is bisected at the vertex and that the subnormal is constant.
 - (b) Trace the curve $r = a(1 + \cos \theta)$.

UNIT--V

- 44. (a) State and prove Lagrange's mean value theorem.
 - (b) Show that of all rectangles of given area, the square has the smallest perimeter.

4

CENTRAL LIBRARY N.C.COLLEGE

(10)

45. (a) Expand $\log_e(1+x)$ in Maclaurin's infinite series in power of x.

(b) Verify Rolle's theorem for the function $f(x) = x^3(x-1)^2$ in the interval [0, 1].

* * *