CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/ODD/SEM/ MTMHCC-102T/303

TDC (CBCS) Odd Semester Exam., 2023

MATHEMATICS

(Honours)

(1st Semester)

Course No.: MTMHCC-102T

(Higher Algebra)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer ten questions, selecting any two from each
Unit: 2×10=20

UNIT-I

- 1. Find all the values of $1^{1/3}$.
- 2. Expand $\cos^2 \theta$ in powers of θ .
- 3. Show that i^i is purely real.

24J/303

(Turn Over)

(2)

UNIT-II

- 4. Define equivalence relation.
- 5. Give an example of a relation which is reflexive and transitive, but not symmetric.
- **6.** If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both one-one, show that $g \circ f$ is one-one.

UNIT—'III

- 7. State the principle of mathematical induction.
- 8. State the well-ordering principle of N.
- 9. State division algorithm.

UNIT-IV

- 10. If α , β , γ are the roots of the equation $x^3 + px + q = 0$, find $\Sigma \alpha$.
- 11. State Descarte's rule of signs.
- 12. How many possible positive roots can the following equation have?

$$x^4 + 2x^3 + 3x - 1 = 0$$

(3)

UNIT---V

- 13. Define echelon form of a matrix.
- 14. Define row canonical form of a matrix.
- 15. Define rank of a matrix.

SECTION-B

Answer *five* questions, selecting *one* from each Unit: 10×5=50

UNIT-I

- 16. State and prove de Moivre's theorem for rational indices.
- 17. (a) If $z_r = \cos \frac{\pi}{2^r} + i \sin \frac{\pi}{2^r}$, then prove that $z_1 \ z_2 \ z_3 \ \dots = -1$.
 - (b) If

24J/303

$$x = \frac{2}{1!} - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \cdots,$$

$$y = 1 + \frac{2}{1!} - \frac{2^3}{3!} + \frac{2^5}{5!} - \cdots,$$

then show that $x^2 = y$.

5

(4)

UNIT-II

- 18. Show that the relation R on \mathbb{Z} defined by $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a b \text{ is divisible by 7}\}$ is an equivalence relation. What are the distinct equivalence classes in \mathbb{Z} under this relation?
- 19. If $f: A \to B$ and $g: B \to C$ are two functions such that $g \circ f$ is one-one and onto, show that f is one-one and g is onto. Give examples to establish that f need not be onto and g need not be one-one.

UNIT-III

- 20. Prove that no integer in the following sequences is a perfect square:
 - (a) 11, 111, 1111, 11111, ...
 - (b) 99, 999, 99999, ···
- **21.** Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Show that—
 - (a) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$;
 - (b) if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any $k \in \mathbb{N}$.

UNIT-IV

22. Solve by Cardan's method

$$x^3 + 9x^2 + 15x - 25 = 0$$

- 23. If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, find—
 - (i) $\Sigma \alpha^2$
 - (ii) $\sum \alpha^3$
 - (iii) Σ_{α}^{1}
 - (iv) $\sum \alpha^2 \beta$

UNIT-V

24. Reduce the following matrix to row canonical form and hence find its rank:

CENTRAL LIBRARY N.C.COLLEGE

(6)

25. Solve the following system of linear equations by Gaussian backward elimination method:

$$x_1 + 2x_2 - x_3 + 4x_4 = 5$$

$$2x_1 - x_2 + 3x_3 + x_4 = 3$$

$$x_1 + 4x_2 + 3x_3 - 7x_4 = 1$$

$$3x_1 - 6x_2 + 4x_3 - 11x_4 = -2$$

