CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/ODD/SEM/ CHMDSC/GE-301T/264

TDC (CBCS) Odd Semester Exam., 2023

CHEMISTRY

(3rd Semester)

Course No.: CHMDSC/GE-301T

(Physical and Organic Chemistry)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer fifteen questions, selecting three from each
Unit: 1×15=15

Unit—I

- 1. Define azeotrope.
- 2. Explain the term 'phase' with an example.
- 3. What is triple point?
- 4. Write an expression of Gibbs' phase rule.

UNIT-II

- 5. Define molar conductivity.
- 6. What is standard electrode potential?
- 7. Write two characteristics of reversible cell.
- 8. What is transport number?

UNIT--III

9. Write the product of the following reaction:

$$\begin{array}{c}
\text{COCl} & \text{H}_2, \text{Pd/BaSO}_4 \\
\hline
& \text{S, xylene}
\end{array}$$
?

10. Write the product of the following reaction:

11. Write the product of the following reaction:

12. Write the product of the following reaction:

(Continued)

UNIT-IV

13. Write the product of the following reaction:

$$CH_3C \Rightarrow N \xrightarrow{\text{LiAlH}_4/\text{H}_2O} ?$$

14. Write the product of the following reaction:

$$CH_3CONH_2 \xrightarrow{LiAlH_4/H_2O}$$
?

15. Write the product of the following reaction:

$$R-NH_2 + HNO_2 \xrightarrow{NaNO_2 + HCl} ?$$

16. Write the product of the following reaction:

$$CH_3-COCI \xrightarrow{NH_3} ?$$

UNIT-V

- 17. What is a peptide linkage?
- 18. What is reducing sugar?
- 19. Write the zwitterion form of amino acid.
- 20. What is isoelectric point?

SECTION-B

Answer *five* questions, selecting *one* from each Unit: 2×5=10

UNIT-I

- 21. Explain the term 'degree of freedom' with suitable examples as used in phase rule.
- 22. Explain graphically the positive and negative deviations of liquid mixtures from ideal behaviour.

UNIT-II

- 23. Discuss how the conductance of strong and weak electrolytes varies with concentration.
- 24. Point out the differences between electrochemical cell and electrolytic cell.

UNIT-III

25. Write the product of the following reactions:

(i)
$$CH_3COCH_3 + CH_3 \xrightarrow{CH_3} \xrightarrow{THF} ?$$

(ii)
$$C_6H_5CHO \xrightarrow{1) LiAlH_4}$$
 ?

26. Identify A and B of the following reactions: $1 \times 2 = 2$ CH₃

DMSO

(i)
$$C=O + NH_2-NH_2 \xrightarrow{DMSO} A + N_2 + H_2O$$
 CH_3

(ii)
$$CH_3CHO + (CH_3)_2CH-OH$$

$$(CH_3)_2CH-OH)_3AI \rightarrow O$$

$$B + CH_3C-CH_3$$

UNIT--IV

- 27. Give reason, why aniline is less basic than ethylamine.
- 28. Explain Schotten-Baumann reaction with a suitable example.

UNIT---V

- 29. What do you mean by C-terminal and N-terminal of a protein chain?
- **30.** What is 'mutarotation'? Give a suitable example.

SECTION-C

Answer *five* questions, selecting *one* from each Unit: 5×5=25

Unit—I

- 31. Draw the phase diagram of water system and explain the curves therein.
- 24J/**263** (Turn Over)

 $1 \times 2 = 2$

(6)

32.	(a)	Distinguish between ideal and non-ideal solutions.	2	
	(b)	Draw the boiling point composition diagrams for binary mixtures of liquids miscible in all proportions.	3	
		Unit—II		
33.	(a)	A zinc electrode is placed in 0·1 M solution of zinc sulphate at 25 °C. If the degree of dissociation of salt at this concentration is found to be 0·95, calculate the electrode potential of the electrode at 25 °C. Given that $E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$.	3	
	(b)		2	
34.	Drav	w free hand graphs of the following: 1×5	=5	
	Conductometric titrations between—			
	(a)	strong acid vs. strong base;		
	(b)	weak acid vs. strong base;		
	(c)	strong acid vs. weak base;		
	(d)	weak acid vs. weak base;		
	(e)	AgNO ₃ vs. KCl (precipitation reaction).		

Unit-III

35.	(a)	How can you distinguish acetaldehyde and benzaldehyde? Write the reactions.	3
	(b)	What happens when benzaldehyde is treated with concentrated NaOH? Write the reactions.	2
36.	(a)	Illustrate benzoin condensation with an example along with mechanism.	3
	(b)	Propose a suitable mechanism for the acidic hydrolysis of ester.	2
		Unit—IV	
37.	(a)	How can you distinguish 1°, 2° and 3° amines? (Write the reactions only)	3
	(b)	With a suitable example, explain the Hofmann degradation of amide.	2
38.	(a)	Illustrate the Gabriel phthalimide synthesis of primary amine.	3
	(b)	Give one example of each of Saytzeff and Hofmann elimination reactions.	2

24J**/263**

CENTRAL LIBRARY N.C.COLLEGE

(8)

UNIT-V

39.	(a)	How will you convert aldopentose to aldohexose?	3
	(b)	Write a short note on electrophoresis.	2
40.	(a)	Define essential and non-essential amino acids.	2
	(b)	Discuss Gabriel phthalimide synthesis of an amino acid.	3
