CENTRAL LIBRARY N.C.COLLEGE

2023/TDC(CBCS)/ODD/SEM/ CHMHCC-102T/259

Action to the section of the section of

TDC (CBCS) Odd Semester Exam., 2023

The free figures that he had been been a strike to be supplied.

CHEMISTRY

Honours)

(1st Semester)

Course No.: CHMHCC-102T

(States of Matter and Ionic Equilibrium)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer ten questions, taking any two from each Unit: 2×10=20

UNIT-I

1. Show that the mean-free-path of a gas at constant volume is directly proportional to temperature.

24J/258

(Turn Over)

CHARLES LEST 1839

- 2. Calculate the various degrees of freedom for the following a salastored block (south) there
 - (a) HCl
 - (b) C₆H₆
- Prove that the molecular velocity of any gas is proportional to the square root of absolute temperature.

THE TERM OFFI

Unit—II

- What are the causes of deviation of real gases from ideal behaviour?
- and the first March 1995 What is Boyle temperature? State the law of corresponding states.
- Draw isotherm of CO₂ at the following temperatures:
 - (a) 13·1 °C
 - 21.5 °C
 - (c) 31·1 °C
 - 35.5 °C

UNIT---III

- What are cohesion and adhesion forces?
- Explain the term 'cytostatic group'.
- What is viscosity of liquid? How does viscosity vary with temperature?

(Continued)

UNIT-IV

- 10. Write the cell parameters for the most unsymmetrical unit cell.
- 11. Explain the term 'F-centre'.
- 12. What do you mean by the term 'plane of symmetry?

UNIT-V

- 13. Define pH. Calculate the pH of 100 mL M/50 HCl solution. 1+1=2
- 14. Write the theory of acid-base indicators taking methyl orange as an example.
- 15. Give two applications of solubility product principle.

SECTION-B

Answer five questions, taking one from each Unit:

6×5=30

Unit--I

- Deduce the kinetic gas equation.
 - Calculate the temperature at which the root-mean-square velocity, the average velocity and the most probable velocity of O_2 gas are all equal to 1500 m s⁻¹.

3 (Turn Over)

3

(4)

17.	(a)	Find out the number of molecules of an ideal gas per litre at (i) 300 K and 1 atm pressure and (ii) 400 K and 2 atm pressure.	2 2
	(b)	What is the effect of temperature and pressure on the coefficient of viscosity?	2
	(c)	Deduce an expression for mean-free- path relating to temperature.	2
		Unit—II	1
18.	(a)	Derive the van der Waals' equation for real gas.	3 .
	(b)	1 mol of SO ₂ gas occupies a volume of 350 mL at 27 °C and 50 atm pressure. Calculate the compressibility factor of the gas. Comment on the type of deviation shown by the gas from ideal behaviour.	=3
19.	(a)	Show that for a van der Waals' gas, the Boyle temperature is $T_B = \frac{a}{R_b}$.	3
	(b)	Mention the difference between real gas and ideal gas.	1/2

Write the expression for reduced

equation of state and explain the terms. 11/2

(Continued)

ι	JN	IT:	<u>.</u>	I	I	Ι	

20. (a) Describe drop number method for the determination of surface tension of a liquid using stalagmometer.
(b) Explain the cleansing action of soaps and detergents.
21. (a) Write Poiseuille's equation. Use this equation to determine the relative viscosity of a liquid experimentally. Mention the name of the apparatus used for the purpose.
(b) Show that 1 Pa.s = 10 poise.

UNIT-IV

- 22. Derive Bragg's equation. How can this equation be used to determine the structure of NaCl? 4+2=6
- 23. Differentiate between Weiss and Miller indices. Calculate the Miller indices of crystal planes which cut through the crystal axis at—
 - (a) (2a, 3b, c);
 - (b) (6a, 3b, 3c);
 - (c) (2a, -3b, -3c).

3+3=6

(Turn Over)

24

24J**/258**

CENTRAL LIBRARY N.C.COLLEGE

(6)

UNIT-V

- 24. (a) Derive Henderson equation for basic buffer solution. What is buffer capacity?

 3+1=4
 - (b) Draw acid-base titration curve for—
 (i) NaOH—HCl
- (ii) CH₃COOH—KOH

 1×2=2

 25. (a) Derive the expression for the hydrolysis
- 25. (a) Derive the expression for the hydrolysis constant, degree of hydrolysis and pH for hydrolysis of ammonium nitrate salt. 3

and the area of the second of

(b) Calculate the solubility of BaSO₄ at 298 K in (i) pure water and (ii) 0.05 M
BaCl₂ solution. Given solubility product of BaSO₄ at 298 K is 1.5×10⁻⁹.

1+2=3

2023/TDC(CBCS)/ODD/SEM/ CHMHCC-102T/259